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Universidad Autónoma de Madrid

28049 Madrid, Spain

enrique.zuazua@fau.de

Dedicated to the memory of Roland Glowinski.

The turnpike property in contemporary macroeconomics asserts that if an
economic planner seeks to move an economy from one level of capital to an-
other, then the most efficient path, as long as the planner has enough time,
is to rapidly move stock to a level close to the optimal stationary or constant
path, then allow for capital to develop along that path until the desired term
is nearly reached, at which point the stock ought to be moved to the final
target. Motivated in part by its nature as a resource allocation strategy, over
the past decade, the turnpike property has also been shown to hold for several
classes of partial differential equations arising in mechanics. When formalized
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mathematically, the turnpike theory corroborates the insights from economics:
for an optimal control problem set in a finite-time horizon, optimal controls
and corresponding states, are close (often exponentially), during most of the
time, except near the initial and final time, to the optimal control and cor-
responding state for the associated stationary optimal control problem. In
particular, the former are mostly constant over time. This fact provides a
rigorous meaning to the asymptotic simplification that some optimal control
problems appear to enjoy over long time intervals, allowing the consideration
of the corresponding stationary problem for computing and applications. We
review a slice of the theory developed over the past decade –the controllability
of the underlying system is an important ingredient, and can even be used to
devise simple turnpike-like strategies which are nearly optimal–, and present
several novel applications, including, among many others, the characteriza-
tion of Hamilton-Jacobi-Bellman asymptotics, and stability estimates in deep
learning via residual neural networks.
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1. Introduction

The field of control provides the principles and methods used to design in-
puts which ensure that systems, arising in common physical, biological or
social science applications, reach a desired configuration in some time, or
maintain a desirable performance over time. The field, in its current form,
may trace its origins to Norbert Wiener and his introduction of cybernet-
ics (Wiener 1949). In most contemporary applications, control is applied
to systems modeled by ordinary or partial differential equations (ODEs or
PDEs). For such systems, one may, in principle, design and use a variety
of different controls which allow to steer or manipulate the state trajec-
tory to one’s choosing. Accordingly, in practice, for robustness, computing
and production reasons, controls are sought to satisfy a certain optimality
criterion. In other words, controls are found by minimizing some cost or
maximizing some reward, which leads one to the field of optimal control – a
classic of applied mathematics, treated in-depth and from several different
lenses ((Lee and Markus 1967), (Lions 1971), (Hinze, Pinnau, Ulbrich and
Ulbrich 2008), (Tröltzsch 2010)).

An exemplifying application of optimal control of partial differential equa-
tions is that of flow control ((Gad-el Hak 2007)). In aeronautics, fluid-flow is
typically modeled by the pillars of fluid mechanics, namely the Navier-Stokes
or Euler equations, while aeroelastic structural deformations are modeled
by nonlinear elasticity systems or variants of beam equations. And in such
contexts, typical control or design problems involve the optimal placement
of actuators along a wing as to minimize vibrations, or optimal shape de-
sign of a wing so that drag is minimized ((Holmes, Lumley, Berkooz and
Rowley 2012), (Castro, Lozano, Palacios and Zuazua 2007), (Mohammadi
and Pironneau 2010)).

An interesting and perpetual artifact appears in these practical appli-
cations: oftentimes, only the time-independent, stationary partial differ-
ential equations are considered by practitioners for control and/or design
((Jameson and Ou 2010), (Jameson 1988)). This is done for obvious com-
putational reasons – a direct simulation of the time-dependent Navier-Stokes
equations would be rather unfeasible and not wise for online design. Nonethe-
less, even if the underlying dynamics (in occurrence, the Navier-Stokes sys-
tem) without control may stabilize to a steady state in large time, there are
no guarantees that the stationary optimal control problem will reflect the
features of solutions to the true, time-dependent problem. This marks the
relevance of the role of the final time horizon in these contexts.

Long time horizons in optimal control of PDEs also occur in other related
applications. An example is sonic-boom minimization, where the main in-
terest is the design of aircraft which are sufficiently quiet to fly supersoni-
cally over land, which namely produces little to no acoustic disturbances for



4 Acta Numerica

humans on ground level. In some settings, the mathematical formulation
of the sonic-boom minimization problem can be seen as an inverse design
or optimal control problem for the inviscid Burgers equation over long time
horizons ((Alonso and Colonno 2012), (Allahverdi, Pozo and Zuazua 2016)).
The stability and inversion properties of such problems are sensitive to
the time horizon and analytical guarantees are thus required ((Liard and
Zuazua 2021), (Esteve and Zuazua 2020)). Similar considerations transfer
to optimal control problems in climate science ((Nordhaus 1992), (Kellett,
Weller, Faulwasser, Grüne and Semmler 2019)), or data assimilation prob-
lems in meteorology and oceanography ((Ghil and Malanotte-Rizzoli 1991)),
in addition to problems transversing fields such as the computation of sen-
sitivities, all of which fit within the framework discussed above.

0 Tε T − ε

Figure 1.1: The turnpike property for optimal (with respect to some cost) controls
u(t) and corresponding states y(t), solving ẏ = f(y, u), over t ∈ [0, T ]. The graph shows
that ‖u(t)‖ and ‖y(t)‖ (blue) are near to ‖u‖ and ‖y‖ (black) respectively, during most
of the time horizon, except for two small initial and final subintervals. In particular,
the former are mostly constant. Here u is the optimal (with respect to the corresponding
time-independent cost) steady control and y corresponding optimal steady state satisfying
f(y, u) = 0. The latter are referred to as the turnpike.

In view of the above discussions, one is expected to understand that the
transition from time-dependent optimal control problems to the associated
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static optimal control problem is an issue which requires careful analysis
and discussion. And it is herein where the concept of turnpike comes into
play. The turnpike property reflects the fact that, for suitable optimal con-
trol problems set in a sufficiently large time horizon, any optimal solution
thereof remains, during most of the time, close to the optimal solution of a
corresponding stationary optimal control problem. This optimal stationary
solution is referred to as the turnpike – the name stems from the idea that
a turnpike is the fastest route between two points which are far apart, even
if it is not the most direct route. In many of these cases, the turnpike prop-
erty is quantified by an exponential estimate; typically, the optimal control-
state pair (u(t), y(t)) is O

(
e−λt + e−λ(T−t))–close to the optimal stationary

control-state pair (u, y), for t ∈ [0, T ] and for some rate λ > 0 independent
of T , provided T � 1.

The denomination turnpike was coined by three pre-eminent economists
of the 20th century – Paul Samuelson, Robert Solow, and Robert Dorfman
– in their seminal text (Dorfman, Samuelson and Solow 1958). We quote,
verbatim, (Dorfman et al. 1958, p. 331) (also found on the Wikipedia):

” Thus in this unexpected way, we have found a real normative signif-
icance for steady growth – not steady growth in general, but maximal
von Neumann growth. It is, in a sense, the single most effective way
for the system to grow, so that if we are planning long-run growth, no
matter where we start, and where we desire to end up, it will pay in
the intermediate stages to get into a growth phase of this kind. It is
exactly like a turnpike paralleled by a network of minor roads. There
is a fastest route between any two points; and if the origin and des-
tination are close together and far from the turnpike, the best route
may not touch the turnpike. But if the origin and destination are far
enough apart, it will always pay to get on to the turnpike and cover
distance at the best rate of travel, even if this means adding a little
mileage at either end. The best intermediate capital configuration is
one which will grow most rapidly, even if it is not the desired one, it
is temporarily optimal. ”

This quote and denomination are actually preceded by another work of
Samuelson in 1948 (see (Samuelson 1965)), in which he shows that an ef-
ficient expanding economy would spend most of the time in the vicinity of
a balanced equilibrium path (also called a von Neumann path). Hence, as
insinuated, these notions trace their origins back to an older work of John
von Neumann (Von Neumann 1937) (and even further back to (Ramsey
1928)). The turnpike theory had subsequently seen further development in
the field of econometrics throughout the 1960s and 70s ((McKenzie 1976),
(Haurie 1976)). And yet, even-though the turnpike property appears to be
a phenomenon which is implicitly used by many practitioners for different
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optimal control problems at different scales, a rigorous theory regarding its
appearance for finite and infinite dimensional systems stemming from me-
chanics, distinguishing the relevant necessary or sufficient conditions, had
been lacking for several decades, until recent developments in the parallel
field of mean field games ((Cardaliaguet, Lasry, Lions and Porretta 2012),
(Cardaliaguet, Lasry, Lions and Porretta 2013), see also Section 14).

It is important to ensure that such a theory is firmly established due
to similar dissonances which arise between mathematics and applications.
Recall the classical problem of control and discretize versus discretize and
control, for instance. In the case of the wave equation with boundary control,
the control and discretization processes do not commute ((Zuazua 2005)).
Indeed, when one first spatially discretizes the wave equation, one obtains
a linear finite dimensional control system, which can be shown to be con-
trollable by a simple algebraic test, the so-called the Kalman rank condi-
tion. In particular, this condition is entirely devoid of time dependence.
However, it is well known and understood that the solutions of the wave
equation manifest an oscillatory behavior, and in particular, cannot be con-
trolled in an arbitrarily small time, as waves require a long time 1 to travel
across the domain. Similar conclusions also hold for shape optimization
((Hébrard and Henrot 2005)) and inverse problems ((Ammari, Asch, Bustos,
Jugnon and Kang 2011)) in wave propagation, or Bayesian inverse problems
((Stuart 2010)), among many other topics. This way of thought should be
extrapolated to the turnpike phenomenon – one cannot simply drop time
dependence and consider the static problem without a priori guarantees of
proximity between both problems.

Through this work, we aim to provide a concise review of the theory
behind this transfer. We shall mostly focus on the heat and wave equations
for clarity of the presentation, and provide comments throughout on results
coming from finite dimensions, and extensions to PDEs of a different nature.
We shall begin by discussing the genesis and proofs of the turnpike property
for optimal control problems subject to linear PDEs. An emphasis is put on
some properties that both the cost functional and the underlying dynamics
need to satisfy. Namely, we shall require a certain amount of controllability
or stabilizability of the underlying system, since, even-though the turnpike
may be clearly defined, one needs some innate mechanism to be able to
reach such a stationary state. On another hand, the cost functional also
needs to carry sufficient observation of the state over the time horizon – we
shall see that, even for dissipative/stable systems such as the heat equation,
the turnpike property may fail if the functional doesn’t track the trajectory

1 The minimal time horizon can be characterized explicitly as a function of the support of
the control, the velocity of propagation of the waves, and the domain where the waves
propagate. See (Zuazua 2005) for a survey.
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over time. On another hand, the wave equation, which conserves energy and
has oscillatory solutions, will satisfy the turnpike property when the state
is tracked over time. This makes clear the need of tracking terms, which
are quite natural from a practical point of view, as one implicitly wishes
(namely, without necessarily imposing constraints) for the state trajectory
to remain within some moderately sized box at all times.

0 Tε T − ε

Figure 1.2: The four-step (more precisely, an ”initialization” step, plus three visible ac-
tions) quasi-turnpike strategy (red) compared to the actual turnpike of Figure 1.1
(dashed gray). The quasi-turnpike strategy is nearly optimal.

In problems for which controllability or stabilizability holds, even before
proceeding with proofs of the turnpike property, one can devise a simple,
yet illustrative, and almost-turnpike strategy in four simple steps:

1). Compute the turnpike y by solving the associated steady optimal con-
trol problem.

2). Use controllability to steer the trajectory y(t) from y0 to the computed
turnpike y in time2 t = ε.

2 In such strategies, the parameter ε may be tuned/optimized with the goal of best
approximating the optimal transient strategy – one would expect that ε should be
large enough as to keep the controllability cost moderate, but not too large either, so
as to remain at the turnpike for as long as possible.
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3). Keep y(t) at the turnpike y for t ∈ [ε, T−ε] by using the steady control.
4). Use the controllability to exit the turnpike with y(t), starting from time

t = T − ε, and reach the final target (if any) in time t = T .

We call such strategies quasi-turnpikes – they are actually commonly used
in practical applications, and we shall often make use of such strategies as
”test cases” in many proofs (see Figure 1.2), or as an initialization for it-
erative proofs (as presented in Section 10 later on). Existing approaches
(linearization-based, or tailored to the nonlinearity) for obtaining results
for nonlinear problems are also presented. In the nonlinear case, an em-
phasis is put on the non-uniqueness of global minimizers for the stationary
optimal control problem, as counter-examples can be produced. This rep-
resents a serious warning for both theory and numerics in the nonlinear
case, and raises several questions. We shall also give several broad applica-
tions of the turnpike property, spanning a priori guarantees for the design
of efficient discretization algorithms for optimal control problems, long time
asymptotics of Hamilton-Jacobi-Bellman equations, and stability properties
in deep learning via residual neural networks, among others. Several open
problems are sprinkled throughout the text.

1.1. Outline

Section 2 is a brief mathematical introduction to the optimal control prob-
lems we shall consider in this work, namely minimizing quadratic functionals
subject to linear (or nonlinear) PDEs, as well as a formal discussion regard-
ing what ingredients such optimal control problems need to possess in view
of exhibiting turnpike.

Part I (sections 3–7) presents the methodology for proving turnpike for
optimal control problems consisting of minimizing an appropriate quadratic
functional subject to a linear PDE. This methodology always makes use
of a study of the optimality system provided by the Pontryagin Maximum
Principle (or simply, the Euler-Lagrange equations), which is a necessary
and sufficient condition for optimality, and borrows tools from Riccati the-
ory in the infinite-time horizon. Such ideas have been introduced in the
works (Porretta and Zuazua 2013), (Porretta and Zuazua 2016), (Trélat
and Zuazua 2015). Several other strategies are also discussed, e.g., those
relying on dissipativity in the sense of Willems (for which we follow (Trélat
and Zhang 2018)), which brings the turnpike property closer to a Lyapunov
method interpretation, or more direct techniques, as per the works (Grüne,
Schaller and Schiela 2019), (Grüne, Schaller and Schiela 2020b), among oth-
ers.

Part II (sections 8–10) is an extension of the results presented in Part I to
the case where the underlying equations are nonlinear. We present a couple
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of different strategies of proof, namely ones based on linearization of the
optimality system (which require smallness assumptions on the target for the
state, and on the initial data, as per (Trélat and Zuazua 2015), (Porretta
and Zuazua 2016)), as well as a new proof ((Esteve-Yagüe, Geshkovski,
Pighin and Zuazua 2020b)), which avoids the use of the optimality system,
combining quasi-turnpike and bootstrap arguments (but requires the targets
to be steady-states).

In the nonlinear case, without making specific assumptions on the target
(as those above), no uniqueness of solutions for the optimality system may
be guaranteed. Consequently, there may be solutions of the optimality sys-
tem which are not optimal with respect to the cost to be minimized. In fact,
we present a recent result ((Pighin 2020)) which provides a counter-example
yielding the non-uniqueness of minimizers for optimal control problems sub-
ject to nonlinear elliptic PDEs. This raises several open problems.

Part III (sections 11-13) presents several direct applications of the turnpike
property in numerical analysis and machine learning. For instance, as first
observed by (Trélat and Zuazua 2015), the turnpike property can be used
to provide an accurate initial guess for shooting problems in numerical opti-
mization. The a priori knowledge of turnpike is also used for more efficient
design of model predictive control (MPC) schemes ((Grüne et al. 2019)).
In the finite-dimensional, linear quadratic optimal control setting, turnpike
also provides a precise asymptotic decomposition for the unique viscosity
solution of the associated Hamilton-Jacobi-Bellman equation (Esteve-Yagüe
et al. 2020b). Finally, turnpike-like properties can also be shown to hold
for supervised learning problems for residual neural networks, for which it
guarantees exponential decay of the approximation error and stability es-
timates for the controls when the number of layers is increased ((Esteve-
Yagüe, Geshkovski, Pighin and Zuazua 2020a), (Faulwasser, Hempel and
Streif 2021b)). These, in turn, imply that the relevant information is concen-
trated in the beginning, and any layers beyond a certain stopping time/layer
may be discarded safely. Section 14 indicates several topics related to the
turnpike property worthy of interest but not treated in depth in this work.

Part IV concludes this paper, with a couple of major and intertwined open
problems.

1.2. Notation

We henceforth suppose that Ω ⊂ Rd is a bounded and smooth domain. We
make use of standard Sobolev spaces – we denote by Hk(Ω) Sobolev spaces
of order k > 0, namely L2(Ω) functions with k weak derivatives in L2(Ω).
Also, H1

0 (Ω) denotes the space of H1(Ω) functions whose Dirichlet trace on
the boundary ∂Ω vanishes. We recall that by the Poincaré inequality, H1

0 (Ω)
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is endowed with the norm ‖f‖H1
0 (Ω) := ‖∇f‖L2(Ω). More details on the above

concepts can be found in classic texts such as (Evans 1998). Furthermore: 1A
denotes the characteristic function of a set A; meas(A) denotes the Lebesgue
measure of A; ∇ and ∆ denote the canonical spatial gradient and Laplacian
on Rd respectively (we shall also use ∇x and ∆x to further emphasize the
spatial differentiation where this may appear ambiguous).

2. Genesis of the turnpike property

2.1. An apparent lack of turnpike

Let us begin by considering a problem which will set the tone in what follows.
We consider the linear, controlled heat equation





∂ty −∆y = u1ω in (0, T )× Ω,

y = 0 in (0, T )× ∂Ω,

y|t=0
= y0 in Ω.

(2.1)

In the above equation, Ω ⊂ Rd is a bounded and smooth domain, T > 0 is a
given time horizon, y0 ∈ L2(Ω) is an initial datum, u = u(t, x) denotes the
control actuating within an open and non-empty measurable subset ω ⊂ Ω,
and y = y(t, x) is the unknown state.

It is now well-known that given an arbitrary initial datum y0 ∈ L2(Ω),
the heat equation (2.1) is controllable to rest (null-controllable) in any time
T > 0, and from any non-empty and open subset ω ⊂ Ω (see (Lebeau
and Robbiano 1995), (Fursikov and Imanuvilov 1996)), in the sense that
there exists a control u ∈ L2((0, T ) × ω) such that the corresponding state
y ∈ C0([0, T ];L2(Ω)) ∩ L2(0, T ;H1

0 (Ω)), designating the unique solution to
(2.1), satisfies

y(T, x) = 0 for a.e. x ∈ Ω. (2.2)

As a matter of fact, due to linearity and time invariance of the heat
equation we consider herein, one can also ensure that the terminal zero
state in (2.2) can be replaced by any (controlled) steady state of (2.1). In
view of the above fact, one can then be interested in finding controls which
ensure the null-controllability of (2.1) and which are of minimal norm, e.g.,
of minimal L2–norm. Namely, one could look to solve the following optimal
control problem:

inf
u∈L2((0,T )×ω)
y solves (2.1)
(2.2) holds

‖u‖2L2((0,T )×ω). (2.3)

Problem (2.3) admits a unique solution by virtue of the direct method in the
calculus of variations – indeed, the set of admissible controls is a non-empty,



Turnpike in optimal control of PDEs, ResNets, and beyond 11

0 1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 5 10 15
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Figure 2.3: The minimal L2((0, T )×ω)–norm controls manifest a ”lazy” behavior, as they
activate and actuate only near t = T in a singular manner. This is in accordance with
the fact that they are characterized as the solutions of a specific backward adjoint heat
equation. We display t 7→ ‖u(t)‖2L2(ω) where ω = (0.25, 0.75)2 and Ω = (0, 1)2. The initial

datum is y0(x1, x2) := sin(πx1) sin(πx2).

closed linear subspace, due to the existence of at least one control ensuring
(2.2), and the functional is coercive, continuous, and convex.

On another hand, it is also well-known that the free solutions to (2.1)
possess a very strong dissipative mechanism, which ensures that they decay
exponentially to 0 as t → +∞ with rate λ1(Ω) > 0 (the first eigenvalue of
the Dirichlet Laplacian −∆). In view of this fact, one could be tempted
to stipulate that the optimal controls and the controlled optimal solution
behave similarly as well. This is however not the case – see Figure 2.3 for
an illustrative counterexample.

To see why the minimal L2–norm control ensuring (2.2) does not satisfy
a property of asymptotic simplification, we simply need to see how it is
characterized by using the first order optimality conditions. This is the
goal of the so-called Hilbert Uniqueness Method (HUM, see (Lions 1988b),
(Glowinski and Lions 1995)). By convex duality, we know that minimal
L2–norm exact controls for the heat equation are in fact given by

u ≡ p1ω a.e. in (0, T )× ω, (2.4)

where p = p(t, x) is the unique solution to the backward (adjoint) heat
equation





∂tp+ ∆p = 0 in (0, T )× Ω,

p = 0 in (0, T )× ∂Ω,

p|t=T = pT , in Ω,

associated to the datum pT ∈ H , which is the unique minimizer of the
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conjugate functional3

J ?
(
pT
)

:=
1

2

∫ T

0

∫

ω
|p(t, x)|2 dx dt+

∫

Ω
y0(x)p(0, x) dx (2.5)

over the Hilbert space H , which is defined as the completion of C∞c (Ω) with
respect to the norm

∥∥pT
∥∥

H
:= ‖p‖L2((0,T )×ω). In fact, this duality is due to

the simple observation that

∫

Ω
y(T, x)pT (x) dx =

∫ T

0

∫

ω
u(t, x)p(t, x) dx dt+

∫

Ω
y0(x)p(0, x) dx

holds for all pT ∈ L2(Ω). Summarizing, the singular behavior of the optimal
control u near t = T is due to the fact that the space H is very large – due
to the regularizing effect of the heat equation, any initial (at time t = T )
datum pT of the backward heat equation with finite-order singularities away
from the control set ω belongs to H . (See (Münch and Zuazua 2010) for a
thorough presentation of this ill-posedness.)

The lack of asymptotic simplification is not solely due to the specific
setting of the problem (2.3), and persists for more conventional optimal
control problems for the heat equation, such as

inf
u∈L2((0,T )×ω)
y solves (2.1)

α

2
‖y(T )− yd‖2L2(Ω) +

1

2
‖u‖2L2((0,T )×ω).

Here yd ∈ L2(Ω) denotes a prescribed target design, and α > 0 is a tunable
regularization parameter. The above problem can again be shown to admit a
unique minimizer by the direct method in the calculus of variations, this time
without requiring any additional coercivity (observability) inequalities. But
then, looking at how the control is characterized, by using the Pontryagin
Maximum Principle (or, equivalently, computing the Euler-Lagrange equa-
tions), one can see that there exists an adjoint state pT ∈ C0([0, T ];L2(Ω))
such that the optimal triple4 (uT , yT , pT ) is the unique solution to the first-

3 Of course, the dual functional J ? defined in (2.5) also admits a unique minimizer
by the direct method in the calculus of variations, as the coercivity of J ?, which
is characterized by an observability inequality for the adjoint system of the form
‖p(0)‖L2(Ω) 6 C(T, ω)‖p‖L2((0,T )×ω) for some C(T, ω) > 0 and for all pT ∈ L2(Ω), is
equivalent to the controllability assumption (2.2) for the forward one ((Lions 1988b)).

4 Here and henceforth, we shall designate, by an underscore T , the dependence of a
function with respect to T .
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order optimality system




∂tyT −∆yT = uT 1ω in (0, T )× Ω,

∂tpT + ∆pT = 0 in (0, T )× Ω,

yT = pT = 0 in (0, T )× ∂Ω,

yT |t=0
= y0 in Ω,

pT |t=T = α(yT (T )− yd) in Ω,

with

uT ≡ pT 1ω a.e. in (0, T )× ω.
Hence, one readily sees that the adjoint state pT and the state yT are only
weakly coupled, through the final condition, and the control is again given
by the solution of the adjoint heat equation, hence similar conclusions hold
as in the previous case (we provide more detail just below).

These artifacts are not unique to the (somewhat surprising) case of the
heat equation; they are also present for analog optimal control problems for
the perhaps more intuitive example of the wave equation





∂2
t y −∆y = u1ω in (0, T )× Ω,

y = 0 in (0, T )× ∂Ω,

(y, ∂ty)|t=0
= (y0, y1) in Ω.

(2.6)

We recall that for any initial data (y0, y1) ∈ H1
0 (Ω) × L2(Ω), and for any

control u ∈ L2((0, T ) × ω), equation (2.6) admits a unique finite-energy
solution y ∈ C0([0, T ];H1

0 (Ω)) ∩ C1([0, T ];L2(Ω)). Once again, when one
considers a problem such as

inf
u∈L2((0,T )×ω)
y solves (2.6)

1

2
‖y(T )‖2H1

0 (Ω) +
1

2
‖∂ty(T )‖2L2(Ω)

︸ ︷︷ ︸
:=φ
(
y(T ),∂ty(T )

)
+

1

2
‖u‖2L2((0,T )×ω), (2.7)

(where we took yd ≡ 0 for simplicity), the optimality system5 takes the form




∂2
t yT −∆yT = pT 1ω in (0, T )× Ω,

∂2
t pT −∆pT = 0 in (0, T )× Ω,

yT = pT = 0 in (0, T )× ∂Ω,

(y, ∂ty)|t=0
= (y0, y1) in Ω,

(pT , ∂tpT )|t=T = (−∂tyT (T ),−∆yT (T )) in Ω.

(2.8)

5 As (2.8) is not a classical Cauchy problem, the existence of a unique solution to the
above system is again due to the fact that the triple (uT , yT , pT ) is optimal, hence
follows from the Pontryagin Maximum Principle.



14 Acta Numerica

Moreover,

uT ≡ pT 1ω a.e. in (0, T )× ω.
Again, one sees that the forward state yT has no effect on the evolution of
the adjoint state pT . In other words, since pT solves a free wave equation,
whose solutions conserve energy, pT will likely oscillate over the entire time
interval (or even manifest a periodic pattern, as in the case d = 1), which
would entail the same conclusions for the control uT , and would exclude the
validity of the turnpike phenomenon.

2.2. The emergence of turnpike

In view of the preceding discussion, one might ask if the turnpike property
appears for optimal control problems for PDEs at all. To answer to these
doubts, let us focus on the wave equation (2.6), and consider another sta-
ple problem of optimal control, namely the following linear quadratic (LQ)
problem

inf
u∈L2((0,T )×ω)
y solves (2.6)

φ
(
y(T ), ∂ty(T )

)
+

1

2

∫ T

0
‖∇xy(t)‖2L2(Ω) dt+

1

2

∫ T

0
‖u(t)‖2L2(ω) dt.

(2.9)
Here φ is defined as in (2.7), and one sees that a tracking term, which tracks
the variations of ∇xy(t) over all the time interval (0, T ), was added. The
optimality system satisfied by an optimal triple (uT , yT , pT ) (this time, for
(2.9)) now reads





∂2
t yT −∆yT = pT 1ω in (0, T )× Ω,

∂2
t pT −∆pT = ∆yT in (0, T )× Ω,

yT = pT = 0 in (0, T )× ∂Ω,

(yT , ∂tyT )|t=0
= (y0, y1) in Ω,

(pT , ∂tpT )|t=T = (−∂tyT (T ),−∆yT (T )) in Ω,

(2.10)

and, again, uT ≡ pT 1ω.
Now, both the forward and adjoint state are strongly coupled due to the

presence of the tracking term of ∇xyT (t) in (2.9), which manifests itself as
∆yT in (2.10). It is precisely this coupling that will cause the occurrence of
the turnpike property.

Let us give a heuristic argument, following (Zuazua 2017), to reinforce this
claim. Assume that ω = Ω in (2.10), and let us ignore initial and terminal
conditions. We write the solution (yT , pT ) in Fourier series as

[
yT (t, x)
pT (t, x)

]
=
∞∑

j=1

[
ŷj
p̂j

]
eµjtϕj(x) for (t, x) ∈ (0, T )× Ω,
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for suitable frequencies µj and scalar coefficients (ŷj , p̂j); here {ϕj}∞j=1 and
{λj}∞j=1 denote the orthonormal basis of eigenfunctions and corresponding

eigenvalues of the Dirichlet Laplacian −∆ : H1
0 (Ω)→ H−1(Ω), thus satisfy-

ing −∆ϕj = λjϕj in Ω. It is then readily seen that



ŷj

(
µ2
j + λj

)
= p̂j

p̂j

(
µ2
j + λj

)
= −λj ŷj .

In view of this, we have
(
µ2
j + λj

)2
+ λj = 0 for j > 1, clearly yielding four

pairs of complex eigenvalues

µj = ±
√
−λj ± i

√
λj ,

namely two pairs of conjugates – two with strictly positive real parts and
two with strictly negative ones, uniformly away from the imaginary axis
{Re (z) = 0} as j → +∞. This means that the solutions of the optimality
system are constituted by the superposition of two time evolving components
of oscillatory nature, one decaying exponentially as t→ +∞ while the other
grows exponentially.
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Figure 2.4: The spectrum (subset of C) of the optimality system for the finite-difference
wave equation (with n = 500 points) with distributed control. The Kalman rank condition
is satisfied. (Left) Spectrum of the optimality system without a tracking term. (Right)
Spectrum of the optimality system with an L2-tracking term. We see a spectral gap for
the real part of the eigenvalues in the presence of a tracking term; the symmetry indi-
cates that those with negative real part entail a decay for the forward wave components,
and those with a positive real part a decay for the backward ones. In the absence of a
tracking term, the gap in the real part of the spectrum collapses to zero, entailing an un-
stable and unsteady nature of the optimality system. This finite-dimensional illustration
is theoretically corroborated in Section 5.

This is contrary to the case without the tracking term for ∇xy(t) (i.e.,
(2.7)), where by writing the optimality system (2.8) in Fourier series as
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above (again, with ω = Ω), one sees that µ2
j + λj = 0 holds for j > 1.

Accordingly, µj would be purely imaginary, thus leading to solutions of
purely oscillatory nature, in agreement with previous observations. In this
case, in particular, the adjoint state pT and accordingly, the control uT
will have a purely oscillatory behavior without never stabilizing around the
optimal steady adjoint state p and control u.

While the above argument is solely heuristic, a similar diagonalization
strategy for the optimality system may be used for a rigorous proof, as done
in (Trélat and Zuazua 2015) (see Section 5 for more details). We depict a nu-
merical example of this spectral dichotomy for a finite-dimensional example
in Figure 2.4.

This behavior is compatible with the turnpike property, according to
which the optimal solution (yT , uT ≡ pT 1ω) should be close to the opti-
mal steady state configuration (y, u) during most of the time horizon of
control [0, T ], when T is large. The optimal steady state configuration (y, u)
is that in which solely the time is dropped, namely, y solves

{
−∆y = u1ω in Ω,

y = 0 on ∂Ω,
(2.11)

with u being the unique minimizer of

inf
u∈L2(ω)

y solves (2.11)

1

2
‖∇y‖2L2(Ω) +

1

2
‖u‖2L2(ω).

The above discussion leads us to conclude that the turnpike property does
not hold for an optimal control problem simply because the underlying or-
dinary or partial differential equation has a dissipative and stabilizing (or
controllable) character when time is large. On the contrary, depending on
the cost to be minimized, turnpike may also hold for oscillatory systems such
as the wave equation. The bottom line is that, to ensure turnpike, solely
a controllability or stabilizability mechanism is needed for the underlying
system and not necessarily a decay of the free dynamics; moreover, one re-
quires sufficient coercivity of the cost functional with respect to the state of
that system.

PART ONE

Linear theory

3. The heat equation

We begin by presenting the theory for the linear heat equation with dis-
tributed controls. As seen in what precedes, even-though the heat equation
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is a dissipative and controllable system, for the turnpike property to ap-
pear, one also needs some coercivity (namely, observability) of the state in
the functional to be minimized. We will focus on a specific linear quadratic
(LQ) problem for the heat equation with distributed control (i.e., (2.1)) to
avoid introducing too many assumptions and unnecessary technicalities in
the proofs – more general statements are given in subsequent sections. This
framework will nonetheless contain most of the specific features and can
readily be generalized.

The full structure of the control problem we consider matters, in addition
to penalizing the full state. For instance, the fact that the control enters in
a distributed way, actuating within an open and non-empty subset ω ⊂ Ω,
ensures the presence of a controllability mechanism which will promote the
appearance of the turnpike property. The situation is different in the case
where the control actuates at a nodal point of the Laplacian (i.e., one has
u(t)δx0 instead of u1ω in (2.1), with x0 being a zero of an eigenfunction of
the Laplacian), in which case controllability fails to hold.

We shall consider the following linear quadratic (LQ) optimal control
problem

inf
u∈L2((0,T )×ω)
y solves (2.1)

1

2

∫ T

0
‖y(t)− yd‖2L2(ω◦)

dt+
1

2

∫ T

0
‖u(t)‖2L2(ω) dt, (3.1)

where ω◦ ⊂ Ω is open and non-empty6, and yd ∈ L2(ω◦). We shall hence-
forth focus on running targets yd which are independent of time. This is
rather natural as steady optimal control problems, used in applications, and
described in the introduction, typically assume such a setup. But, in fact,
many results and insights transfer to specific settings of time dependent
targets (see Section 7.3).

The corresponding steady optimal control problem then reads

inf
u∈L2(ω)

y solves (3.3)

1

2
‖y − yd‖2L2(ω◦)

+
1

2
‖u‖2L2(ω), (3.2)

where the underlying PDE constraint is given by the linear controlled Pois-
son equation {

−∆y = u1ω in Ω,

y = 0 on ∂Ω.
(3.3)

6 In this example, we are minimizing the discrepancy of the state y(t) to the design
target yd only in, possibly, a small subdomain ω◦ of Ω. Some PDEs (e.g. the wave
equation) will require further geometric assumptions on ω◦ for turnpike to be induced,
as sufficient observation of the state inscribed within the functional itself will be needed
(in addition to similar geometric assumptions on ω to ensure controllability).
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By virtue of the direct method in the calculus of variations, one may easily
show that problem (3.2) admits a unique minimizer u ∈ L2(ω) and there
exists a unique optimal steady state y ∈ H2(Ω) ∩H1

0 (Ω), solution to (3.3)
corresponding to u. As discussed in preceding paragraphs, the turnpike
property for the optimal pair (uT , yT ) solving (3.1) would mean that (uT , yT )
is ”near” (u, y), namely the optimal solution to the steady problem (3.2) (the
turnpike) during most of the time horizon [0, T ] with an exception of two
boundary layers near t = 0 and t = T . This is illustrated by the following
result, due to (Porretta and Zuazua 2013).

Theorem 3.1 ((Porretta and Zuazua 2013)). Let y0 ∈ L2(Ω) and
yd ∈ L2(ω◦) be fixed. There exist a couple of constants C > 0 and λ > 0,
independent of y0 and yd, such that for any large enough T > 0, the unique
solution (uT , yT ) to (3.1) satisfies

‖yT (t)− y‖L2(Ω) + ‖uT (t)− u‖L2(ω)

6 C
(∥∥y0 − y

∥∥
L2(Ω)

e−λt + ‖p‖L2(Ω)e
−λ(T−t)

)
, (3.4)

for a.e. t ∈ [0, T ], where (u, y) denotes the unique solution to (3.2), and
p ∈ H1

0 (Ω) is the optimal steady adjoint state in (3.6).

There exist (at least) a couple of ways to prove Theorem 3.1. Both of
them rely on analyzing the decay properties of the corresponding optimality
systems, found by computing the Euler-Lagrange equations at the optimal
pairs (uT , yT ) and (u, y) respectively. In the LQ case we present herein, these
systems are necessary and sufficient conditions for optimality. As seen, for
instance in (3.5), the optimality system for the evolutionary problem is a
coupled system, consisting of a forward heat equation for the state yT , and
a backward heat equation for the adjoint state pT . Due to the coupling of
states which evolve in different directions in time, it is not straightforward
to obtain a full understanding of the decay properties of the system.

• In the original proof of (Porretta and Zuazua 2013), which we present
just below, one looks to uncouple the system by making use of some
feedback operator –a rather classical procedure, described in (Lions
1971), (Lions 1988b) for instance. This feedback is constructed by
making use of the Riccati operator from the associated infinite-time
horizon problem (but without actually solving an infinite-dimensional
Riccati equation), which is known to provide a feedback control ensur-
ing exponential stability in infinite time. To take into account the final
time horizon T , one cuts-off the preceding feedback by means of a cor-
rector term, which will be shown to decay as O

(
e−(T−t)) for t ∈ [0, T ].

• An alternative strategy, introduced in (Trélat and Zuazua 2015) (see
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0 Tε T − ε +∞

Riccati

Corrector hT (t)

Figure 3.5: The Riccati-inspired strategy: we use the feedback given by the infinite-
time horizon Riccati operator, and correct it near time t = T by means of the ”auxiliary”
adjoint state hT (t).

also (Trélat, Zhang and Zuazua 2018b)) which is especially transparent
in the context of finite-dimensional linear control systems (discussed
in section 5), consists in subtracting the evolutionary and stationary
optimality system, and looking at the resulting system as a shooting
problem. The matrix appearing in this shooting problem can be diago-
nalized, again making use of the infinite-time horizon Riccati operator,
resulting in an uncoupled system whose matrix is hyperbolic. Conse-
quently, the first part of the state will decay forward in time, while the
other will decay backward in time, yielding the double-arc exponential
turnpike estimate.

Before proceeding with further comments, we shall provide a sketch of the
proof of (Porretta and Zuazua 2013), namely following the first strategy,
indicating the main steps.

Proof. Let us begin by writing down the first-order optimality systems for
both the evolutionary and steady optimal control problems. They read,
respectively, as





∂tyT −∆yT = pT 1ω in (0, T )× Ω,

∂tpT + ∆pT = (yT − yd)1ω◦ in (0, T )× Ω,

yT = pT = 0 in (0, T )× ∂Ω,

yT |t=0
= y0 in Ω,

pT |t=T = 0 in Ω,

(3.5)
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and 



−∆y = p1ω in Ω,

−∆p = −(y − yd)1ω◦ in Ω,

y = p = 0 on ∂Ω.

(3.6)

Moreover,

uT ≡ pT 1ω a.e. in (0, T )× ω (3.7)

and

u ≡ p1ω a.e. in ω.

Again, these systems can be found by either applying the Pontryagin Max-
imum Principle, or straightforwardly computing the Euler-Lagrange equa-
tions. We now structure the proof in three steps.

Step 1. Riccati stability when yd ≡ 0. We shall begin by firstly consid-
ering the reference case in which yd ≡ 0, and, unless otherwise stated, the
triple (uT , yT , pT ) refers specifically to this case. We shall also denote by
J 0

T (·) the functional defined in (3.1) with yd ≡ 0.
For T > 0, we define the operator E (T ) : L2(Ω)→ L2(Ω) by

E (T )y0 := −pT (0),

for y0 ∈ L2(Ω). Clearly, E (T ) is linear. Now, by multiplying the first equa-
tion in (3.5) by pT and integrating over (0, T )×Ω, we derive the variational
identities

〈
E (T )y0, y0

〉
L2(Ω)

=

∫ T

0
‖yT (t)‖2L2(ω◦)

dt+

∫ T

0
‖pT (t)‖2L2(ω) dt

(3.7)
= inf

u∈L2((0,T )×ω)
y solves (2.1)

J 0
T (u). (3.8)

From (3.8), we may gather two crucial clues.

• First of all, we see that E (T ) is non-decreasing with respect to T > 0.
Indeed, for t1 6 t2, let ut1 and ut2 designate the minimizers of J 0

t1 and
J 0

t2 respectively. From (3.8) we see that
〈
E (t1)y0, y0

〉
L2(Ω)

= J 0
t1(ut1) 6 J 0

t1(ut2) 6 J 0
t2(ut2)

=
〈
E (t2)y0, y0

〉
L2(Ω)

,

as desired.
• On another hand, from (3.8), we can also ensure that E (T ) is bounded

uniformly in T > 0. Indeed, using the exponential stabilizability of the
heat semigroup7 in conjunction with Datko’s theorem ((Datko 1972)),

7 Here, as a matter of fact, we use the exponential decay of the semigroup, but for more



Turnpike in optimal control of PDEs, ResNets, and beyond 21

we may find that
∣∣∣∣∣
〈
pT (0), y0

〉
L2(Ω)

∣∣∣∣∣ 6 ‖pT (0)‖L2(Ω)

∥∥y0
∥∥
L2(Ω)

6 C0

(∫ T

0
‖yT (t)‖2L2(ω◦)

dt+

∫ T

0
‖pT (t)‖2L2(ω) dt

)1/2 ∥∥y0
∥∥
L2(Ω)

(3.9)

holds for some constant C0 > 0 independent of T > 0 and y0. Com-
bining (3.9) with (3.8) leads us to the desired conclusion. For com-
pleteness, let us briefly sketch the proof of (3.9). Fix an arbitrary
ψ0 ∈ L2(Ω) and consider





∂tψ −∆ψ = 0 in (0, T )× Ω,

ψ = 0 on (0, T )× ∂Ω,

ψ|t=0
= ψ0 in Ω.

(3.10)

Multiplying the equation for pT in (3.5) by ψ and integrating, and then
using Cauchy-Schwarz, we find
∣∣∣∣
〈
pT (0), ψ0

〉
L2(Ω)

∣∣∣∣ =

∣∣∣∣
∫ T

0

∫

Ω
yT (t, x)1ω◦ψ(t, x) dx dt

∣∣∣∣ (3.11)

6
(∫ T

0
‖yT (t)‖2L2(ω◦)

dt

)1/2(∫ T

0
‖ψ(t)‖2L2(Ω) dt

)1/2

.

By virtue of the exponential decay of solutions to (3.10), and Datko’s
theorem ((Datko 1972)), there exists a constant C0 > 0, independent
of T and y0, such that

∫ T

0
‖ψ(t)‖2L2(Ω) dt 6 C0

∥∥ψ0
∥∥2

L2(Ω)
. (3.12)

Applying (3.12) to (3.11), and choosing ψ0 := pT (0), leads us to (3.9).

The limit limT→+∞〈E (T )y0, y0〉L2(Ω) thus exists, and is actually character-
ized in terms of the infinite-time horizon (the regulator) problem, defining a
limit operator E∞. Actually, E∞ : L2(Ω)→ L2(Ω) may be characterized as

E∞y
0 := −p∞(0),

for y0 ∈ L2(Ω), where, in this case, the pair (y∞, p∞) solves the optimality

general settings in which exponential decay does not hold (e.g. some parabolic equations
with lower order terms, the wave equation, and so on), exponential stabilizability by
means of some feedback operator suffices (which in turn, is implied by controllability).
This is addressed in Section 4.
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system in an infinite-time horizon:




∂ty∞ −∆y∞ = p∞1ω in (0,+∞)× Ω,

∂tp∞ + ∆p∞ = y∞1ω◦ in (0,+∞)× Ω,

y∞ = p∞ = 0 in (0,+∞)× ∂Ω,

y∞|t=0
= y0 in Ω,

p∞(t) −−−−→
L2(Ω)

0 as t→ +∞.

(3.13)

(We refer to (Porretta and Zuazua 2013, Lemma 3.9) for the complete proof
of this fact.) Observe that by the semigroup property (namely, time invari-
ance), we have

p∞(t) = −E∞y∞(t),

for t ∈ (0,+∞). Hence, the first equation in the infinite-time horizon prob-
lem (3.13) rewrites as ∂ty∞ +My∞ = 0 in (0,+∞)× Ω, where

M := −∆ + E∞1ω.

In other words, the system (3.13) is now uncoupled. Furthermore, it can be
seen that f 7→ −〈E∞f, f〉L2(Ω) is a Lyapunov functional for the first equation
in (3.13); indeed,

d

dt

〈
− E∞y∞(t), y∞(t)

〉
L2(Ω)

=
d

dt

〈
p∞(t), y∞(t)

〉
L2(Ω)

= −
(
‖y∞(t)‖2L2(ω◦)

+ ‖p∞(t)‖2L2(ω)

)
,

for all t > 0. From this, it can then rigorously be shown (again making use of
Datko’s theorem) that the operator M : H2(Ω)∩H1

0 (Ω)→ L2(Ω) generates a
strongly-continuous and exponentially stable semigroup {etM}t>0 on L2(Ω)
– namely, there exists λ > 0 such that

∥∥etMy0
∥∥
L2(Ω)

6 e−λt
∥∥y0
∥∥
L2(Ω)

, (3.14)

holds for all t > 0. Finally, it can furthermore be shown (we omit the proof,
which can be found in (Porretta and Zuazua 2013, Lemma 3.9))8, that there
exists a constant C1 > 0 (independent of T ) such that

‖E (T )− E∞‖L (L2(Ω)) 6 C1e
−λT , (3.15)

holds for all T > 0; here, λ > 0 is the same as in (3.14).

Step 2. Uncoupling the optimality system with a correction near

8 We note that both of these conclusions are actually well-known facts, and in addition
to the proof found in (Porretta and Zuazua 2013, Lemma 3.9), we refer the reader to
(Zabczyk 2020, Part IV, Chapter 4, Theorem 4.4, p. 241), and also to (Lions 1988b,
Sections 8-10) and the references therein.
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t = T . We now come back to the case yd 6≡ 0. Note that when yd ≡ 0,
and T = +∞, we could readily uncouple the optimality system through the
Riccati feedback operator E∞. In the case T < +∞, to match the terminal
condition for the adjoint at t = T , we need to slightly correct this Riccati
feedback. To this end, let us define hT ∈ C0([0, T ];L2(Ω)) as the unique
weak solution to the system





−∂thT +
(
−∆ + E (T − t)1ω

)
hT = 0 in (0, T )× Ω,

hT = 0 in (0, T )× ∂Ω,

hT |t=T = −p in Ω.

Note that, here, E (T − t)y0 := −pT−t(0), namely, is defined as in the first
step, with pT−t designating the unique solution to the second equation in
(3.5) set on (0, T − t), with yd ≡ 0. We introduce hT precisely in order to
uncouple the optimality system: the key observation is that using judiciously
the definition of E (t), one gathers

∫

Ω

(
pT (t)− p

)
f dx =

∫

Ω
(yT (t)− y)

(
E (T − t)f

)
dx+

∫

Ω
hT (t)f dx,

for all f ∈ L2(Ω). Whence, we see that the adjoint state pT can be repre-
sented by the affine feedback law

pT (t)− p = E (T − t)
(
yT (t)− y

)
+ hT (t), (3.16)

for t ∈ [0, T ]. One sees that hT (t) was designed to play the role of a corrector,
taking care of the final arc near time t = T . By using the above feedback, the
optimality system (3.5) can then be uncoupled by seeing that the optimal
trajectory yT satisfies

∂tyT −∆yT = −p1ω − E (T − t)1ω
(
yT (t)− y

)
− hT 1ω

in (0, T )× Ω, the above identity being interpreted in the weak sense.

Step 3. Energy estimates for the uncoupled system. Let us now set
ζ(t) := yT (t)− y; since y solves the first equation in (3.6), by the Duhamel
formula one finds

ζ(t) = etM
(
y0 − y

)
+

∫ t

0
e(t−s)M

(
K(s)ζ(s)− hT (s)1ω

)
ds,

where K(s) :=
(
E∞ − E (T − s)

)
1ω. By the Duhamel formula once again,

h(t) = −e(T−t)Mp+

∫ T

t
e(t−s)MK(s)hT (s) ds,

where the identity is understood in the L2(Ω)–sense. By using Grönwall’s
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lemma along with (3.15) and (3.14), one finds

‖hT (t)‖L2(Ω) 6 C1e
−λ(T−t)‖p‖L2(Ω), (3.17)

for t ∈ [0, T ]. Using Grönwall’s lemma once more, along with (3.14), (3.15),
and (3.17) to ζ(t) leads us to

‖ζ(t)‖L2(Ω) 6 C2

(∥∥y0 − y
∥∥
L2(Ω)

e−λt + ‖p‖L2(Ω)e
−λ(T−t)

)
(3.18)

for any t ∈ [0, T ]. Here the constant C2 > 0 is clearly independent of T , but
also independent of the choice of initial data and running target yd. This
yields the desired turnpike property for ζ(t) := yT (t)− y. Taking advantage
of the affine feedback law (3.16) once again, using (3.18), the uniform-in-T
boundedness of E (T ), as well as (3.17), we also find

‖pT (t)− p‖L2(Ω) 6 C3

(∥∥y0 − y
∥∥
L2(Ω)

e−λt + ‖p‖L2(Ω)e
−λ(T−t)

)

for t ∈ [0, T ], and for some possibly larger constant C3 > 0, independent of
T, y0 and yd. As uT ≡ pT 1ω and u ≡ p1ω, we may conclude.

Remark 3.2 (The decay rate λ). Reading the proof, one notes that the
rate of decay λ > 0 appearing in the turnpike estimate is in fact explicit. It
is precisely given as the exponential decay rate for the system

{
∂ty + (−∆ + E∞1ω)y = 0 in (0,+∞)× Ω,

y|t=0
= y0 in Ω.

Namely, λ corresponds to the spectral abscissa of the operator −∆ + E∞1ω.
This is also seen in the strategy of (Trélat and Zuazua 2015) (see Section
5).

Remark 3.3 (Feedback law & turnpike for the adjoint). Once again
by reading the proof, one garners further information than what is stated
in the theorem. First of all, we note that the optimal control uT is given by
an affine feedback law of the form

uT (t) =
(
p+ E (T − t)(yT (t)− y) + hT (t)

)
1ω for t ∈ (0, T ).

On another hand, the turnpike property also holds for the adjoint state pT (t)
and corresponding stationary adjoint state p:

‖pT (t)− p‖L2(Ω) 6 C
(∥∥y0 − y

∥∥
L2(Ω)

e−λt + ‖p‖L2(Ω)e
−λ(T−t)

)

for t ∈ [0, T ].

Remark 3.4 (Pay-off at time T ). Let us stress that the turnpike esti-
mate would take a more ”symmetric” form if the adjoint state pT had a
different data prescribed at time t = T . To achieve such a goal, one could
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consider a cost functional which contains an additional pay-off at the final
time, such as, for instance

JT (u) := 〈pT , y(T )〉L2(Ω) +
1

2

∫ T

0
‖y(t)−yd‖2L2(ω◦)

dt+
1

2

∫ T

0
‖u(t)‖2L2(ω) dt

for some pT ∈ L2(Ω). In this case, the adjoint state, by writing the op-
timality system, would have to satisfy pT (T ) = pT , and the above proof
applies without any change except that now the corrector term hT will take
a different final condition (equal to pT − p) and the estimate would become

‖yT (t)− y‖L2(Ω) + ‖uT (t)− u‖L2(Ω)

6 C
(∥∥y0 − y

∥∥
L2(Ω)

e−λt +
∥∥pT − p

∥∥
L2(Ω)

e−λ(T−t)
)

for all t ∈ [0, T ]. A more general pay-off φ(y(T )) instead of 〈pT , y(T )〉L2(Ω)

can also be considered in the definition of JT just above (assuming it is, for
example, Fréchet differentiable on L2(Ω), convex, and bounded from below),
and one would then change the terminal condition for the adjoint state: one
would have pT (T ) = ∇φ(yT (T )), where the gradient is interpreted as the one
found by the Fréchet derivative and subsequently the Riesz representation
theorem. Of course, for a more general payoff, the symmetry with respect
to the data in the turnpike estimate just above would not be replicated.

Remark 3.5 (Reference for the control). The turnpike result remains
the same if the control u(t) in the functional defined in (3.1) tracks a given
reference ud ∈ L2(ω), namely, if one minimizes

JT (u) :=
1

2

∫ T

0
‖y(t)− yd‖2L2(ω◦)

dt+
1

2

∫ T

0
‖u(t)− ud‖2L2(ω) dt,

instead of the functional defined in (3.1). The proof remains identical, with
the only differences being the definition of the optimal control wherein one
also accounts for ud, namely uT (t) ≡ ud+pT 1ω (and similarly for the steady
control u), and thus also the addition of ud as a source in the equation for
the forward state yT (and similarly for the steady state y).

We delay further comments after generalizing the above result to a wider
array of evolution equations. This is done in what follows.

4. General evolution equations

The linear heat equation enjoys several properties which play a role in the
proof just above. These namely include the fact that the heat semigroup{
e−t∆

}
t>0

is exponentially stable, and that the heat equation is observable

from any open and non-void subset ω◦ ⊂ Ω. One may thus be lead to think
that turnpike only holds for such dissipative systems. This is not the case –
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as we shall see, it will suffice for the system to be solely stabilizable by means
of some feedback law. And for the latter, controllability suffices. This is in
agreement with common sense. Indeed, if the system under consideration
is stabilizable, the optimal control will actually stabilize the system. The
controlled system will therefore behave as an exponentially decaying system.
Once the system enters this stable regime, the turnpike property will be
manifested.

It is thus worthwhile to see under what conditions the turnpike property
holds for general partial differential equations and cost functionals. We
shall see that the same result holds for significantly more general evolution
equations – for instance, hyperbolic equations –, with boundary controls and
boundary observations in the tracking terms.

4.1. The transport equation as a motivating example

To motivate the appearance of turnpike for hyperbolic equations, let us
illustrate the validity of the turnpike property for perhaps the simplest such
equation imaginable: the linear transport equation.

We consider 



∂ty + ∂xy = 0 in (0, T )× (0, 1),

y(t, 0) = u(t) in (0, T ),

y(0, x) = y0(x) in (0, 1),

(4.1)

and the natural LQ problem

inf
u∈L2(0,T )

y solves (4.1)

1

2

∫ T

0

∫ 1

0
|y(t, x)− yd(x)|2 dx dt+

1

2

∫ T

0
|u(t)|2 dt. (4.2)

Here yd ∈ L2(0, 1) is a given running target. Given y0 ∈ L2(0, 1) and
u ∈ L2(0, T ), (4.1) admits a unique weak solution y ∈ C0([0, T ];L2(0, 1))
(see (Coron 2007, Section 2.1.1) for the appropriate notion of weak solution).

One may look to replicate the Riccati-inspired proof presented in the
context of the heat equation – to this end, we can first write the optimality
system for an optimal pair (uT , yT ) for (4.2) – (4.1), which reads





∂tyT + ∂xyT = 0 in (0, T )× (0, 1),

∂tpT + ∂xpT = yT − yd in (0, T )× (0, 1),

yT (t, 0) = pT (t, 0) in (0, T ),

pT (t, 1) = 0 in (0, T ),

yT (0, x) = y0(x) in (0, 1),

pT (T, x) = 0 in (0, 1),

(4.3)
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with

uT (t) = pT (t, 0) for t ∈ [0, T ].

But, for the transport equation (4.1), the turnpike property can actually be
derived by explicit calculations.

Let us corroborate this claim. Since solutions to (4.1) are constant along
characteristics, one readily sees that y takes the form

y(t, x) =

{
y0(x− t) for t 6 x,

u(t− x) for t > x.
(4.4)

Because of this formula, for a given and fixed datum y0 ∈ L2(0, 1), we can
see that (4.2) is actually equivalent to the unconstrained quadratic problem

inf
u∈L2(0,T )

1

2

∫ T

0

∫ 1

0
|u(t− x)− yd(x)|21{x6t} dx dt+

1

2

∫ T

0
|u(t)|2 dt

︸ ︷︷ ︸
:=JT (u)

.

Since JT is strictly convex, continuous, and coercive, it admits a unique
minimizer uT , which is also a solution to (4.2). We compute the Gâteaux
derivative of JT at uT in any direction v ∈ L2(0, T ) to find that

∫ 1

0

∫ T

0

(
uT (t− x)− yd(x)

)
v(t− x)1{t>x} dtdx+

∫ T

0
uT (t)v(t) dt = 0.

The change of variable t− x = τ yields

∫ T

0

∫ 1

0

(
uT (τ)− yd(x)

)
v(τ)1(0,T−x)(τ) dτ dx+

∫ T

0
uT (t)v(t) dt = 0.

Another change of variable in the indicator function above leads us to

2uT (τ)−
∫ 1

0
yd(x)1(0,T−τ)(x) dx = 0,

for a.e. τ ∈ (0, T ). We then clearly see that

uT (t) =
1

2

∫ min{1,T−t}

0
yd(x) dx (4.5)
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for a.e. t ∈ (0, T ). And in view of (4.4), we also find
∫ 1

0
yT (t, x) dx =

(∫ t

0
uT (τ) dτ +

∫ 1−t

0
y0(ζ) dζ

)
1{t61}

+

(∫ t

t−1
uT (τ) dτ

)
1{t>1}

=

(
1

2

∫ t

0

∫ min{1,T−τ}

0
yd(ζ) dζ dτ +

∫ 1−t

0
y0(ζ) dζ

)
1{t61}

+

(
1

2

∫ 1

0
yd(ζ) dζ

)
1{1<t<T−1}

+

(
1

2

∫ t

t−1

∫ T−τ

0
yd(ζ) dζ dτ

)
1{t>T−1} (4.6)

for all t ∈ [0, T ]. The above characterizations clearly indicate an exact
turnpike-like pattern, as, for instance, we see that the (mass of the) optimal

state yT (t) is stationary at 1
2

∫ 1
0 yd(x) dx over the time interval (1, T − 1).

Furthermore, this pattern actually emerges rather rapidly, namely when
T > 2 only. This is also visible in the numerical experiments shown in
Figure 4.6.

To be able to conclude and consider this as a turnpike phenomenon, we
need to ensure that the optimal steady control-state pair is precisely given
by

(u, y) =

(
1

2

∫ 1

0
yd(x) dx,

1

2

∫ 1

0
yd(x) dx

)
.

To this end, we consider the steady problem corresponding to (4.2), which
reads

inf
u∈R

∂xy=0 in (0,1)
y(0)=u

1

2

∫ 1

0
|y(x)− yd(x)|2 dx+

1

2
|u|2. (4.7)

One readily sees that the constraints in (4.7) yield y ≡ u, and so (4.7) is
actually an unconstrained minimization problem on R:

inf
u∈R

1

2

∫ 1

0
|u− yd(x)|2 dx+

1

2
|u|2. (4.8)

It is readily seen that the unique solution to (4.8) is u ≡ 1
2

∫ 1
0 yd(x) dx, and

as u ≡ y, we deduce a turnpike property for the optimal evolutionary pair
(uT , yT ) to (u, y).

This simple example indicates that the turnpike property may also appear
for hyperbolic equations. We provide more examples and a general setup in
Sections 4.2–4.3.
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Remark 4.1 (Compatible norms). It is important to note that the above
derivation, and subsequent result, rely on the fact that the state and the con-
trol are penalized in compatible topologies (here, L2(0, T ) for the boundary
control, and consequently, L2((0, T ) × (0, 1)) for the state). The computa-
tions are then explicit due to the choice of these topologies, but, in essence,
the result is inherently due to the possibility of exponentially stabilizing the
system through a feedback operator defined on the energy space.

The bottom line is that there should be a compatibility in the topologies
being penalized for the control and the state, due to conservation of regular-
ity. This is clearly seen in the optimality system (4.3). Roughly speaking,
if solely the H−1(0, T )-norm of the boundary control u(t) is penalized, then
there would be a mismatch of regularity between the state yT and the ad-
joint state pT through the boundary condition at x = 0. The same artifact
appears in the context of the wave equation, and is discussed later on.

0 1 2 3 4 5 6 7 8 9 10

time
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0.05

0.1
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Figure 4.6: A numerical visualization of the optimal control uT solving (4.2) (left), and
mass of the corresponding solution yT to (4.1) (right), for T = 10, y0(x) = sin(πx), and
yd ≡ 1. (Left) We see that the optimal control uT (t) is constant equal to the turnpike
1
2

∫ 1

0
yd = 1

2
for t 6 T − 1 and reaches 0 at time t = T , as per (4.5). (Right) We also see

that the mass of the optimal state yT (t) splits in three stages: it descends to the turnpike
1
2

in time t = 1, stays at the turnpike until time t = T − 1, and then exits, as per (4.6).

4.2. First-order in time (parabolic) equations

We shall consider general evolution equations written as abstract first-order
systems, with a main focus on parabolic equations. While the wave equation
may also fit in this setting, there is a difficulty in defining a general functional
setting for such differing kinds of problems, as the wave equation conserves
the regularity of the initial datum, unlike the gain of regularity typically
encountered in parabolic equations. The specific proof of turnpike however,
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Figure 4.7: A surface plot of the optimal state yT (t, x) solution to (4.1), further showing
the turnpike phenomenon: the initial datum is transported until time t = 1, beyond which
the state stays at the turnpike equal to 1

2
until time t = T − 1, when it exits per (4.6).

and the structural hypotheses on the dynamics, control, and observation
operators, are identical in both cases. We thus postpone the specific case of
the wave equation (and natural generalizations thereof) to the subsequent
section. The presentation will require elementary knowledge of semigroup
theory and functional analysis; we refer the reader to (Tucsnak and Weiss
2009) for all the needed details.

Let us henceforth suppose that we are given a couple of Hilbert spaces X
and H such that

X ↪→H ↪→ X ′

(with dense embeddings), where the pivot space H is identified with its
dual H ′. This is a Gelfand triple, the canonical example thereof of course
being X := H1

0 (Ω), H := L2(Ω), with X ′ = H−1(Ω). We shall focus on
linear, first order control systems, written in a canonical form

{
∂ty = Ay +Bu in (0, T ),

y|t=0
= y0.

(4.9)

Here,

• A : D(A)→H is closed and densely defined, with A ∈ L (X,X ′); we
also suppose that −A + αId is coercive for some α > 0, in the sense
that there exist a couple of constants (α, β) ∈ (0,+∞)2 such that

〈
(−A+ αId)f, f

〉
H

> β‖f‖2X , (4.10)

holds for all f ∈ D(A). The above hypothesis entails that A gener-
ates a strongly continuous semigroup {etA}t>0 on H (see (Lions 1971,
Chapter 3, pp. 100–105)). We need not assume that A is symmetric.
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This is an inherently ”parabolic” hypothesis, as it is mostly valid in
cases where the principal part of the operator −A is self-adjoint, and,
consequently, the bilinear form inferred from the principal part of −A
is equivalent to the norm X-norm. We suppose that D(A) is also dense
in X, so (4.10) also holds for all f ∈ X, modulo replacing the inner
product in H by the duality bracket between X ′ and X.

• Let us also note that, for ensuring the generation of a strongly contin-
uous semigroup, one may also simply assume A being m-dissipative in
the sense of (Cazenave and Haraux 1998):

‖f − λAf‖H > ‖f‖H
holds for all λ > 0 and f ∈ D(A), and, moreover, (Id−λA)f = g admits
a solution f ∈ D(A) for any g ∈ H . We shall actually use (4.10) to
also guarantee the existence of solutions to the steady optimal control
problem (see Remark 4.11).

• On the other hand, the control operator is B ∈ L (U ,H ), where U
is another Hilbert space. A feasible scenario is having H = L2(Ω)
and U = L2(ω), with ω ⊂ Ω open and non-empty, namely the typical
distributed control setting as considered in (2.1). We comment on
systems involving boundary controls in Remark 4.12; the framework
and results can be adapted by making use of transposition and duality
arguments. These are solely technical considerations, and do not carry
significant conceptual differences to the strategy for proving turnpike
we have presented in the context of the heat equation with distributed
control.

Remark 4.2 (Examples of (4.10)). The coercivity inequality (4.10) is
not only satisfied by the Dirichlet Laplacian (with α = 0 and β = 1, where
X = H1

0 (Ω), H = L2(Ω) and D(A) = H2(Ω) ∩ H1
0 (Ω)), but also by the

Neumann Laplacian (with α = β = 1, where X = H1(Ω), H = L2(Ω), and
D(A) = {y ∈ H2(Ω)

∣∣ ∂ny = 0 on ∂Ω}), and also for more general elliptic
operators involving lower order perturbations.

By virtue of these assumptions on A and B, for any u ∈ L2(0, T ; U ) and
y0 ∈H , the abstract system (4.9) is well posed, in the sense that there exists
a unique weak solution9 y ∈ C0([0, T ]; H ) ∩ L2(0, T ;X) (see (Lions 1971,
Chapter 3, pp. 100–105), and also (Tucsnak and Weiss 2009) for a primer
on semigroup theory in control).

We shall henceforth consider the following optimal control problem

inf
u∈L2(0,T ;U )
y solves (4.9)

1

2

∫ T

0
‖Cy(t)− yd‖2H dt+

1

2

∫ T

0
‖u(t)‖2U dt. (4.11)

9 In fact, one has stronger information in that, moreover, ∂ty ∈ L2(0, T ;X ′).
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In the above problem, C ∈ L (H ) is10 a given observation operator, whereas
yd ∈ H . In the specific example of (3.1) for instance, we had Cy = y|ω◦
and H = L2(Ω), with ω◦ ⊂ Ω. But as we shall see in what proceeds,
the definition of C can be relaxed to take into account scenarios which are
of practical relevance, such as boundary observation via Neumann traces.
Final pay-offs may also be considered, under similarly moderate assumptions
(convex, Fréchet differentiable, bounded from below). Again, these are solely
technical adaptations, so we omit them to avoid even more cumbersome
notation.

The optimal control problem (4.11) again admits a unique solution by the
direct method in the calculus of variations. The steady problem correspond-
ing to (4.11) reads as

inf
(u,y)∈U ×X
Ay+Bu=0

1

2
‖Cy − yd‖2H +

1

2
‖u‖2U ; (4.12)

(4.12) also admits a unique optimal solution (u, y), but we postpone the
brief argument11 to Remark 4.11.

Since the proof of Theorem 3.1 consist in studying the decay properties
of the optimality system, in this new abstract framework, we will also need
to ensure that the forward equation for the state, as well as the backward
equation for the adjoint state, possess a stabilization mechanism. To this
end, we will make the following two natural assumptions.

Beforehand, we recall that an operator semigroup {T (t)}t>0 on a Hilbert
space H is called exponentially stable if there exist a couple of constants
c > 1 and λ > 0 such that

‖T (t)‖L (H ) 6 c e−λt

holds for all t > 0.

Assumption 4.3 (Stabilizability). We suppose that there exists a feed-
back operator K ∈ L (H ,U ) such that the semigroup12

{
et(A+BK)

}
t>0

on

10 Henceforth, whenever we use C to denote the observation operator, we shall use lower-
case letters (e.g. c) to denote constants in various estimates.

11 We do note however that it is relevant to optimize over pairs (u, y) over the manifold
{Ay + Bu = 0} ⊂ U × X, as opposed to optimizing solely over u with y satisfying
the equation Ay + Bu = 0. Both are equivalent whenever −A is invertible, since in
this case, for any given u there exists a unique solution y to Ay + Bu = 0. Herein we
consider a more general scenario, to account for cases such as the Neumann Laplacian.

12 Note that since BK ∈ L (H ), as a bounded perturbation of A, the operator A+ BK
also generates a strongly continuous semigroup on H (see (Tucsnak and Weiss 2009,
Section 2.11)).
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H is exponentially stable. Equivalently,

sup
‖y0‖H 61

∫ +∞

0

∥∥∥et(A+BK)y0
∥∥∥

2

H
< +∞ (4.13)

holds.

When the above assumption holds true, we say that (A,B) is exponentially
stabilizable. The equivalence stated in Assumption 4.3 is due to (Datko 1972)
(see also (Tucsnak and Weiss 2009, Corollary 6.1.14)). By virtue of (4.13),
one readily sees that there exists a constant c > 0 such that for all T > 0
and y0 ∈H , the unique solution y to

{
∂ty = (A+BK)y in (0, T ),

y|t=0
= y0

satisfies ∫ T

0
‖y(t)‖2H dt 6 c

∥∥y0
∥∥2

H
. (4.14)

Here, it is critical to emphasize that the constant c > 0 is independent of T .

Assumption 4.4 (Detectability). We suppose that there exists a feed-
back operator K ∈ L (H ) such that the semigroup

{
et(A

∗+C∗K)
}
t>0

on H
is exponentially stable. Equivalently,

sup
‖pT ‖H 61

∫ +∞

0

∥∥∥et(A∗+C∗K)pT
∥∥∥

2

H
< +∞ (4.15)

holds.

In such a case, we say that the pair (A,C) is assumed to be exponentially
detectable. And similarly as before, (4.15) implies that there exists a con-
stant c > 0 such that for all T > 0 and pT ∈ H , the unique solution p
to {

−∂tp = (A∗ + C∗K)p in (0, T ),

p|t=T = pT
(4.16)

satisfies ∫ T

0
‖p(t)‖2H dt 6 c

∥∥pT
∥∥2

H
. (4.17)

Once again, as for (4.14), we emphasize that the constant c > 0 is inde-
pendent of T . We also note, vis-à-vis (4.16), that both the forward and the
adjoint equation are posed in the same Hilbert space H , which is identified
with its dual. This artifact is in line with the assumptions we had made on
the structure of the underlying system and the governing operator, and are
typical for parabolic equations.
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Inequalities (4.14) and (4.17) are then used in proving that the operator
M := −A + BB∗E∞ generates an exponentially stable semigroup on H ,
and that E (T ) converges exponentially to E∞ (both defined as in the proof
of Theorem 3.1); these two properties are cornerstones of the proof. We
refer to Remark 4.10 for more details on how these assumptions are used
to derive weaker observability inequalities (and consequently, some kind of
unique continuation properties) which appear in the proof, as well as how
they may be derived from stronger, but more intuitive assumptions such as
controllability and observability.

Taking stock of the above conditions, we may state the following general-
ization of Theorem 3.1 – namely, an exponential turnpike property for the
solutions to (4.11).

Theorem 4.5 ((Porretta and Zuazua 2013)). Suppose y0 ∈ H and
yd ∈ H are fixed. Under Assumptions 4.3 and 4.4, there exist a couple of
constants c > 0 and λ > 0, independent of y0 and yd, such that for any large
enough T > 0, the unique solution (uT , yT ) to (4.11) satisfies

‖yT (t)− y‖H + ‖uT (t)− u‖U
6 c

(∥∥y0 − y
∥∥

H
e−λt + ‖p‖H e−λ(T−t)

)
(4.18)

for a.e. t ∈ [0, T ], where (u, y) denotes the unique solution to (4.12), and
p ∈ X is the optimal steady adjoint state.

Proof. The proof follows the same lines as that for the heat equation (The-
orem 3.1), and may be found in (Porretta and Zuazua 2013). First, one
may readily write the optimality systems for the time-dependent and steady
optimal control problems. They read, respectively, as





∂tyT = AyT +BιuB
∗pT in (0, T ),

−∂tpT = A∗pT − C∗(CyT − yd) in (0, T ),

yT |t=0
= y0,

pT |t=T = 0

(4.19)

and {−Ay = BιuB
∗p,

A∗p = C∗(Cy − yd),
(4.20)

with uT ≡ ιuB
∗pT and u ≡ ιuB

∗p. Here ιu : U ′ → U is the natural
injection of the dual U ′ in the Hilbert space U . Assumptions 4.4 and 4.3
are then used (see also Remark 4.10) to ensure the convergence of E (T ) to
E in the reference case yd ≡ 0 (defined as in the proof of Theorem 3.1),
exponentially, with rate λ > 0; this is shown precisely in (Porretta and
Zuazua 2013, Section 3.2).
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There are several examples to which one can apply the above theorem.
Let us name a few to illustrate the wide spectrum of applications they
encompass.

1. Advection-diffusion equations. We may consider a more general setting
to the linear heat equation with constant coefficients we presented in
what precedes, namely an advection-diffusion equation with distributed
control and observation, where

Ay := −∇ · (a(x)∇y) + c(x)y + b(x) · ∇y.
The coefficients are assumed as follows: a ∈ L∞(Ω;Rd×d) is such that
α1Id 6 a(x) 6 α2Id for some α1, α2 > 0 and for a.e. x ∈ Ω, while
c ∈ L∞(Ω) and b ∈ L∞(Ω)d. Accordingly, A is an elliptic operator.
Let Bu = u1ω and Cy = y|ω◦ , with U = L2(ω); both ω, ω◦ ⊂ Ω are
open and non-empty. Setting X = H1

0 (Ω), H = L2(Ω), we see that A
satisfies the coercivity requirements stated in what precedes. Should
‖b‖L∞ and/or ‖c‖L∞ be large, then A might not generate an exponen-
tially stable semigroup. Yet (A,B) and (A∗, C∗) are stabilizable due
to the presence of some control (through B and C∗), and the turnpike
property then holds. This is another example of a system which may be
unstable in the absence of control, but can then be stabilized through
the action of a control. In occurrence, this is also sufficient for the
turnpike property to be manifested.

2. Stokes equations. Similarly, the result applies for systems of equations,
such as the linear Stokes equations with Dirichlet boundary conditions
on a bounded and smooth domain Ω ⊂ R2:





∂ty −∆y = −∇p+ u1ω in (0, T )× Ω,

∇ · y = 0 in (0, T )× Ω,

y = 0 in (0, T )× ∂Ω,

y|t=0
= y0 in Ω.

Here y = (y1, y2) and u = (u1, u2). The functional setting is only
slightly more delicate in this case. The underlying Hilbert state space
H is defined as

H :=
{

y ∈ L2(Ω;R2)
∣∣∣ ∇ · y = 0, y|∂Ω · ν = 0

}

In the definition of H , ν ∈ R2 denotes the outward unit normal to ∂Ω.
We then set X = H1

div(Ω), where

H1
div(Ω) :=

{
y ∈ H1

0 (Ω;Rd)
∣∣∣ ∇ · y = 0

}
.

We can define the Stokes operator A : D(A) → H as A = −P∆,
with domain D(A) =

{
y ∈ H1

div(Ω)
∣∣ Ay ∈H

}
. Here −∆ denotes
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the Dirichlet Laplacian on Ω, while P : L2(Ω;R2) = H ⊕H ⊥ →H is
the Leray projection. The operator A is self-adjoint, and exponentially
stabilizable ((Fernández-Cara, Guerrero, Imanuvilov and Puel 2004)),
hence previous considerations apply. Linear convective potentials (as in
the first item) may also be added; this allows one to see the framework
as linearized Navier-Stokes.

3. Many further examples can be fit in this framework, including several
classes of degenerate linear parabolic equations ((Cannarsa, Beauchard
and Guglielmi 2013), (Gueye 2014), (Geshkovski 2020)), evolution equa-
tions for the fractional Laplacian with Dirichlet boundary conditions
((Warma and Zamorano 2021), (Macià 2021)), and so on.

4.3. The wave equation

The linear wave equation




∂2
t y −∆y = u1ω in (0, T )× Ω,

y = 0 in (0, T )× ∂Ω,

(y, ∂ty)|t=0
= (y0, y1) in Ω,

(4.21)

may also fit in the setting of the result presented above. This is done in
greater depth in (Zuazua 2017). As (4.21) is a second-order system, the
state is (y, ∂ty). Therefore, some adaptations are needed in terms of the
functional setting, but the proof of turnpike follows precisely the same argu-
ments. We shall avoid abstractions in this part, and state the result specific
to (4.21). In other words, the turnpike property does also hold for appro-
priate optimal control problems for the wave equation (4.21), and under
appropriate assumptions on the control domain ω.

We may consider

inf
u∈L2((0,T )×ω)
y solves (4.21)

1

2

∫ T

0
‖y(t)− yd‖2H1

0 (Ω) dt+
1

2

∫ T

0
‖u(t)‖2L2(ω) dt. (4.22)

Note that we are not only penalizing ∇xy(t, x) in (4.22), but we do so over
the entire domain Ω (instead of an open and non-empty subdomain ω◦).
We discuss both of these considerations in Remark 4.7 – the latter one is
actually not necessary, but renders the presentation simpler.

The corresponding steady system is the same as the one for the heat
equation, namely (3.3). The steady optimal control problem then reads

inf
u∈L2(ω)

y solves (3.3)

1

2
‖y − yd‖2H1

0 (Ω) +
1

2
‖u‖2L2(ω). (4.23)

Theorem 4.5 applies to (4.22) under the assumption that ω ⊂ Ω satisfies the
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Geometric Control Condition (GCC). This condition roughly asserts that all
the rays of geometric optics in Ω, reflected according to the Descartes-Snell
law on the boundary, enter the domain ω in some finite, uniform time (see
the seminal work (Bardos, Lebeau and Rauch 1992)).

The following result then holds.

Theorem 4.6 ((Zuazua 2017)). Suppose that ω ⊂ Ω is open, non-empty,
and satisfies GCC. Let (y0, y1) ∈ H1

0 (Ω)× L2(Ω) and yd ∈ H1
0 (Ω) be fixed.

There exist a couple of constants C > 0 and λ > 0, independent of y0 and
yd, such that for any T > 0 large enough, the unique solution (uT , yT ) to
(4.22) satisfies

‖yT (t)− y‖H1
0 (Ω) + ‖∂tyT (t)‖L2(Ω) + ‖uT (t)− u‖L2(ω)

6 C

(∥∥∥
(
y0 − y, y1

)∥∥∥
H1

0 (Ω)×L2(Ω)
e−λt + ‖p‖L2(Ω)e

−λ(T−t)
)
, (4.24)

for a.e. t ∈ [0, T ], where (u, y) denotes the unique solution to (4.23), and
p ∈ L2(Ω) is the optimal steady adjoint state.

Proof. The proof follows precisely the same lines as that for the heat equa-
tion, and we only provide a sketch thereof. Let us focus on Step 1 per the
proof of Theorem 3.1, in which yd ≡ 0. We consider the transient optimality
system 




∂2
t yT −∆yT = pT 1ω in (0, T )× Ω,

∂2
t pT −∆pT = ∆yT in (0, T )× Ω,

yT = pT = 0 on (0, T )× ∂Ω,

(yT , ∂tyT )|t=0
= (y0, y1) in Ω,

(pT , ∂tpT )|t=T = (0, 0) in Ω.

(4.25)

Of course, once again, uT ≡ pT 1ω. For T > 0, we can define the operator
E (T ) : H1

0 (Ω)× L2(Ω)→ H−1(Ω)× L2(Ω) as

E (T )
(
y0, y1

)
:= (−∂tpT (0), pT (0)) ,

and see that
〈
E (T )

(
y0, y1

)
,
(
y0, y1

) 〉
=

∫ T

0
‖y(t)‖2H1

0 (Ω) dt+

∫ T

0
‖p(t)‖2L2(ω) dt

= inf
u∈L2((0,T )×ω)
y solves (4.21)

J 0
T (u). (4.26)

Here, J 0
T denotes the functional defined in (4.22) with yd ≡ 0, and 〈·, ·〉

denotes the duality bracket between H−1(Ω) × L2(Ω) and H1
0 (Ω) × L2(Ω).

This characterization then implies that E is monotonically increasing with
T > 0.
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To derive similar conclusions as for the heat equation, we seek to use the
stabilizability assumptions in (4.26) to show that E (T ) is bounded uniformly
with respect to T > 0, from which point on, an exponential convergence to
the regulator operator E∞ can be derived.

It is well-known ((Bardos et al. 1992), (Burq and Gérard 1997)) that GCC
for ω is a sharp sufficient (and almost necessary) condition for the observ-
ability of the adjoint wave equation. Namely, for any T > Tmin(ω,Ω) > 0
(excluding the trivial case ω = Ω, in which Tmin = 0), there exists a con-
stant C > 0, depending on ω,Ω and T , such that for any pair of initial data
(p0, p1) ∈ L2(Ω)×H−1(Ω), the corresponding solution p to the adjoint wave
equation 




∂2
t p−∆p = 0 in (0, T )× Ω,

p = 0 on (0, T )× ∂Ω,

(p, ∂tp)|t=T = (p0, p1) in Ω,

satisfies13

∫

Ω
|p(0, x)|2 dx+ ‖∂tp(0, ·)‖2H−1(Ω) 6 C

∫ T

0

∫

ω
|p(t, x)|2 dtdx. (4.27)

The observability inequality (4.27) then yields14 the stabilizability of the
forward wave equation, in the sense that there exist c > 1 and µ > 0,
independent of the solution y to the damped wave equation

{
∂2
t y −∆y + 1ω∂ty = 0 in (0,+∞)× Ω,

y = 0 in (0,+∞)× ∂Ω,

such that

E(y(t)) :=

∫

Ω
|∂ty(t, x)|2 dx+

∫

Ω
|∇y(t, x)|2 dx 6 ce−µt E(y(0)) (4.28)

holds for all t > 0. The stabilizability of the underlying dynamics (combined
with the equivalent characterization through Datko’s theorem (Datko 1972))
is precisely the ingredient used in ensuring the uniform boundedness of E (T )
with respect to T (see (Porretta and Zuazua 2013)), and ultimately the expo-
nential convergence of E (T ) to E∞, which allows to uncouple the optimality
system, just as done for the heat equation in the previous section.

13 At this point, we furthermore see that the stabilizability of the state equation, and the
detectability of the adjoint one, must take place in the appropriate dual space. And
this is linked precisely to the notion of having well-balanced norms penalized in the
cost functional.

14 The observability inequality can actually be used to build more general feedback oper-
ators which ensure the exponential decay of the energy for the associated closed-loop
wave system at any rate µ > 0 ((Komornik 1997)).
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Remark 4.7 (Observation in the functional). To prove turnpike, we
need to ensure that the cost functional allows to recover enough informa-
tion on the state (yT , ∂tyT ). This is in agreement with our discussions
in preceding sections, in which we indicated the relevance of controllabil-
ity/stabilizability for the turnpike phenomena to emerge.

1. It is for this reason that we penalize ‖∇xy(t)‖2L2(Ω), instead of solely

‖y(t)‖L2(Ω) over (0, T ). (Actually, ‖∂ty(t)‖L2(Ω) would also suffice, due
to the equipartition of energy for the wave equation, according to which,
modulo a compact remainder, the time-averages of ‖∂ty(t)‖L2(Ω) and
‖∇xy(t)‖L2(Ω) are equivalent.) Indeed, if we were to solely penalize
‖y(t)‖L2(Ω), there would already an apparent mismatch in the optimal-
ity system, which in such a case, would read as

{
∂2
t yT −∆yT = pT 1ω in (0, T )× Ω,

∂2
t pT −∆pT = yT in (0, T )× Ω.

(4.29)

We see that here the right hand side term of the adjoint equation is
yT (t) ∈ H1

0 (Ω), unlike in (4.25), where ∆yT (t) ∈ H−1(Ω), which is the
correct regularity for the source term to ensure that pT (t) ∈ L2(Ω).
This mismatch results in the fact that the Riccati feedback operator
E (T ) cannot be ensured to converge exponentially to the regulator E∞.

2. In the cost functional, we had penalized ∇xy(t, x) everywhere in Ω,
instead of solely within an open and non-empty subdomain ω◦ ⊂ Ω.
This was done solely to simplify the presentation, as one would need to
localize the observation within ω◦ through a cut-off function, whenever
∂ω◦ 6⊂ ∂Ω. One could consider, for instance, a cut-off χ ∈ C∞c (Rd),
with χ ≡ 1 in an appropriate compact subset K b ω◦, and χ ≡ 0 in
a neighborhood of ∂ω◦, as well as in Ω \ ω◦, and rather, minimize the
functional

JT (u) :=
1

2

∫ T

0

∫

ω◦

∣∣χ∇
(
y(t, x)− yd(x)

)∣∣2 dx dt+
1

2

∫ T

0

∫

ω
|u(t, x)|2 dx dt.

Just as assumed for ω, for turnpike to hold, one needs to suppose that
supp(χ) ⊂ ω◦ satisfies GCC, as to ensure the presence of an expo-
nentially stabilizing mechanism with a damping localized through the
cut-off χ.

Remark 4.8 (Further second-order examples). The above turnpike
result may also be applied to other second-order systems.

1. More general settings for wave equations can also be considered (as
done in (Zuazua 2017), (Trélat et al. 2018b), (Grüne et al. 2020b)); for
instance, Neumann boundary conditions, or taking into account the
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medium heterogeneities through variable coefficients

ρ(x)∂2
t y −∇ ·

(
σ(x)∇y

)
= u1ω in (0, T )× Ω,

where σ, ρ are smooth up to the boundary, with σ(x) > 0 and ρ(x) > 0
for x ∈ Ω.

2. One may also replace the Dirichlet Laplacian −∆ by the biharmonic
operator ∆2 (and adapt the boundary conditions appropriately) – this
gives rise to the Euler-Bernouilli beam equation. Since the latter is
controllable and observable (in any positive time T – see (Lions 1988a,
Appendix 1), (Tucsnak and Weiss 2009, Proposition 7.5.7)), the turn-
pike property also holds in this case.

Remark 4.9 (Lack of GCC). 1. If ω does not satisfy GCC, then one
can ensure at least logarithmic decay for the smooth solution to the
damped wave equation, namely logarithmic stabilizability for the wave
equation, in the sense that the smooth solution y to





∂2
t y −∆y + 1ω∂ty = 0 in R× Ω,

y = 0 in R× ∂Ω,

(y, ∂ty)|t=0
= (y0, y1) in Ω,

satisfy (recall the definition of the energy E in (4.28))

E(y(t)) 6 C0

(log(2 + t))2

(∥∥y0
∥∥2

H2(Ω)
+
∥∥y1
∥∥2

H1(Ω)

)
.

(See (Lebeau 1996).) Proceeding by duality as done in (Porretta and
Zuazua 2013, Lemma 4.5), one can then only ensure an estimate of the
form

‖p(0)‖2H−1(Ω) + ‖∂tp(0)‖2(H1
0∩H2(Ω))′ (4.30)

6 C T

(log(T + 2))2

(∥∥pT
∥∥2

L2(Ω)
+ ‖p‖2L2((0,T )×ω) + ‖f‖2L2(0,T ;H−1(Ω))

)

for some C > 0 independent of T > 0, and for any pT ∈ L2(Ω),
f ∈ L2(0, T ;H−1(Ω)), and the corresponding solution p to





∂2
t p−∆p = f in (0, T )× Ω,

p = 0 on (0, T )× ∂Ω,

(p, ∂tp)|t=T = (pT , 0) in Ω.

(4.31)

This is a significantly weaker estimate than

‖p(0)‖2L2(Ω) + ‖∂tp(0)‖2H−1(Ω) (4.32)

6 C
(∥∥pT

∥∥2

L2(Ω)
+ ‖p‖2L2((0,T )×ω) + ‖f‖2L2(0,T ;H−1(Ω))

)
,
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which holds for some C > 0 independent of T when ω satisfies GCC,
both in terms of the topology15 for which it holds, and the fact that
upper bound in (4.30) will grow with T . Inequality (4.32) is implied
by (4.27), and is specifically used to prove the exponential decay of the
Riccati feedback operator E (T ) to E∞.

2. When GCC doesn’t hold, one can still obtain an inkling of a turnpike
property (albeit not an exponential turnpike property). More specifi-
cally, in (Porretta and Zuazua 2013), for data y0 ∈ H2(Ω)∩H1

0 (Ω) and
y1 ∈ H1(Ω), the authors show that

1

T

(∫ T

0
‖yT (t)− y‖2L2(ω◦)

dt+

∫ T

0
‖u(t)− u‖2L2(ω) dt

)

6 C

(log(2 + T ))2

(∥∥y0
∥∥2

H2(Ω)
+
∥∥y1
∥∥2

H1(Ω)
+ ‖p‖2H2(Ω)

)
.

This is an integral turnpike property, indicating the convergence, when
T → +∞, of time averages of optimal evolutionary pairs to the cor-
responding optimal steady pair. We refer to (Han and Zuazua 2021)
for recent results in the context of wave equations on planar graphs.
The lack of exponential stabilizability is also typical in this context
((Dáger and Zuazua 2006), (Valein and Zuazua 2009)). We also refer
to (Gugat and Hante 2019) for a direct strategy for proving integral
turnpike properties tailored to first-order, linear hyperbolic systems.

4.4. Discussion

Remark 4.10 (On Assumptions 4.3 and 4.4). Let us make some ob-
servations regarding the assumptions, in particular, relating them with more
familiar and easy-to-check controllability and observability properties, fol-
lowing (Porretta and Zuazua 2013).

• We begin by noting that detectability for (A,C) implies the existence of
a constant c > 0 such that for every y ∈ C0([0, T ]; H ), f ∈ L2(0, T ;X ′)
and y0 ∈H such that

{
∂ty = Ay + f in (0, T ),

y|t=0
= y0,

15 This topology is in fact very weak, as (H1
0 (Ω) ∩H2(Ω))′ is not even a space of distri-

butions, since C∞c (Ω) is not dense in H1
0 (Ω) ∩ H2(Ω). This space is nonetheless well

suited to the study of evolution equations governed by the Laplacian, as it’s simply
the dual space of its domain, which can be characterized by Fourier expansion in the
orthobasis of eigenfunctions.
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the inequality

‖y(T )‖2H 6 c

(∥∥y0
∥∥2

H
+

∫ T

0
‖f(t)‖2X′ dt+

∫ T

0
‖Cy(t)‖2H dt

)
(4.33)

holds for all T > 0. This inequality is clearly satisfied (even with
C ≡ 0) whenever −A is coercive on X, namely, 〈−Af, f〉H > β‖f‖2X
for some β > 0 and all f ∈ D(A), by straightforward energy estimates.
Otherwise, the contribution of Cy(t) is non-negligable, and the fulfill-
ment of (4.33) requires an effective interaction of the operator C and
the dynamics generated by A. An analog result can be obtained for
the adjoint system by making use of the stabilizability assumption (see
(Porretta and Zuazua 2013, Hypothesis 3.3)). We refer to (Porretta
and Zuazua 2013, Lemma 3.5) for a proof.

• In fact, in (Porretta and Zuazua 2013), only (4.33) is assumed, contrary
to assuming the exponential detectability hypothesis. Analogously, a
similar hypothesis is assumed for the adjoint system, which is then
implied by the exponential stabilizability assumption we make here.
This is done for simplicity of the presentation.

• We also note that (4.33) holds whenever a stronger estimate of the form

‖y(τ)‖2H 6 cτ

(∫ τ

0
‖f(t)‖2H dt+

∫ τ

0
‖Cy(t)‖2H dt

)
(4.34)

holds for some cτ > 0 and for all y such that ∂ty = Ay + f in (0, τ).
To see this, one invokes (4.34) over (T − τ, T ) to obtain

‖y(T )‖2H 6 cτ

(∫ T

T−τ
‖f(t)‖2H dt+

∫ T

T−τ
‖Cy(t)‖2H dt

)
,

and so (4.33) holds for T > τ . The local well-posedness of the equation
implies (4.33) for T 6 τ . On another hand, by superposition, estimate
(4.34) holds if and only if the observability inequality

∥∥eτAy0
∥∥2

H
6 cτ

∫ τ

0

∥∥CetAy0
∥∥2

H
dt (4.35)

holds for all τ > 0, y0 ∈H , and for some cτ > 0 depending only on τ,A
and C. In other words, observability in the sense of (4.35) suffices for
ensuring estimate (4.33). Note that an observability inequality such as
(4.35) for (A,C), which is actually equivalent to the null controllability
of (A∗, C∗), also implies the exponential detectability for (A,C) (which,
we recall, means that (A∗, C∗) is exponentially stabilizable). Analogous
conclusions hold for the stabilizability for (A,B). Both of these impli-
cations are part of the same, namely, the well-known fact that null-
controllability implies exponential stabilizability (see (Haraux 1989) in
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the context of the wave equation, and (Tucsnak and Weiss 2009, The-
orem 3.3, pp. 227) for the general setting). See (Trélat, Wang and
Xu 2019) for further details regarding these characterizations.

• In the finite-dimensional case (in which A ∈ Rd×d, B ∈ Rd×m and
C ∈ Rs×d), stabilizability and detectability are not only sufficient, but
also necessary for having exponential turnpike (see (Esteve, Kouhk-
ouh, Pighin and Zuazua 2020, Theorem A.3)). The necessity of these
assumptions in the PDE context is also likely, but has not been demon-
strated in full generality to our knowledge.

Remark 4.11 (Existence of steady minimizers). To ensure the exis-
tence and uniqueness of minimizers to Js defined in (4.12), namely solutions
to the latter, one would again look to apply the direct method in the cal-
culus of variations. However, due to the fact that we are now optimizing
over pairs (u, y), coercivity of Js with respect to y in the norm of X is also
needed. And said coercivity follows from (4.33). To see as to why this is the
case, we note that (4.33) implies that there exists a constant c1 > 0 such
that

‖y‖2X 6 c1

(
‖Ay‖2X′ + ‖Cy‖2H

)
(4.36)

holds for all y ∈ X. Indeed, applying (4.33) (which is implied by Assumption
4.4, per the previous remark) to ζ(t) := ty for an arbitrary y ∈ X, we get

T 2‖y‖2H 6 2c
T 3

3

(
‖Ay‖2X′ + ‖Cy‖2H

)
+ 2cT‖y‖2X′ .

By virtue of H ↪→ X ′, and choosing T � c, we find

‖y‖2H 6 c0

(
‖Ay‖2X′ + ‖Cy‖2H

)
.

The conclusion then follows by adding 〈−Ay, y〉X′,X on both sides of the
estimate, and using the coercivity assumption on −A and A ∈ L (X,X ′).
Note that from (4.36), one readily sees that the functional Js(u, y) defined
in (4.12) is coercive with respect to (u, v) in the U ×X–norm. This, com-
bined with the strict convexity of the problem allows to apply the direct
method and derive existence and uniqueness of solutions to (4.12).

Remark 4.12 (Boundary control). In the context of boundary control,
for instance, when y(t, x) = u(t, x)1Γ on (0, T )× ∂Ω where Γ ⊂ ∂Ω is open
and non-empty, instead of having distributed controls of the form u1ω◦ as
in (2.1), the turnpike property as stated above still holds. It is however not
a direct consequence of Theorem 4.5, which assumed that B ∈ L (U , X ′),
a hypothesis which is not satisfied by trace operators. In the context of the
simple heat equation (2.1), the proof can be adapted by making use of a
prudent lifting of the trace, albeit at the cost of additional technicalities.
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In the abstract setting of Theorem 4.5, the proof requires introducing the
concept of admissible control operators B (see (Tucsnak and Weiss 2009)).
We merely stated the result in the context of bounded control operators
to avoid many unnecessary technical details. The proof of the turnpike
property for such control operators may be found in (Trélat et al. 2018b)
and in (Grüne et al. 2020b).

Remark 4.13 (Tracking boundary observations). In many of the ex-
amples we mentioned, the observation operator C is a bounded linear op-
erator on H . For example, this is usually the case when we can observe
the state y within an arbitrarily small, open subset ω◦ ⊂ Ω, in which case,
Cy = y|ω◦ and H = L2(Ω). However, in applications stemming from geo-
physics and tomography, among many others, it is natural to think of a
regression problem in which only boundary measurements of the state are
tracked. Namely, one could imagine having an observation operator given
by the Neumann trace, say, on the entire boundary ∂Ω:

Cy = ∂νy, for y ∈ X.

In this case, the operator C is not bounded on H , or even from X to H ;
rather, it is defined on a domain D(C) which is dense in X, and its range is
typically a subset of some other Hilbert space V . But this does not a priori
allow to consider the adjoint C∗ as an operator C∗ ∈ L (V ′, X ′), which
would allow us, given the optimal steady state y ∈ X, to define the steady
adjoint state p ∈ X as satisfying

A∗p = C∗ι(Cy − yd), (4.37)

where ι : V → V ′ is the natural injection of V in its dual V ′.
A remedy for this issue is to define the adjoint state p through a trans-

position argument. We focus on the stationary adjoint state – the evolution
problem follows a similar argument. Let us assume that there exists some
functional space W ⊂ X such that C ∈ L (W ,V ) and, simultaneously, such
that A ∈ L (W ,H ) is invertible. In this case, the adjoint state p ∈H can
be defined, instead of (4.37), by solving the equation

〈p,Aϕ〉H = 〈Cy − yd, Cϕ〉V , for all ϕ ∈ W .

For example, in the case of Neumann trace observation, and working with
the Dirichlet Laplacian and distributed controls, one would have X = H1

0 (Ω)
and W = H2(Ω)∩H1

0 (Ω). This transposition argument only slightly changes
the proof of turnpike, namely the definition of the optimality system (see
(Porretta and Zuazua 2013)).



Turnpike in optimal control of PDEs, ResNets, and beyond 45

5. A diagonalization strategy

The proof of turnpike presented in what precedes can be slightly tweaked
to obtain a version which may be seen as even more illustrative. In the
finite dimensional case, this variation relies on essentially diagonalizing the
optimality system, leading, as before, to an uncoupled system for which the
asymptotics are transparent. This is done by noting that the optimality
system can be written as a shooting problem governed by a matrix which,
under the Kalman rank condition, is hyperbolic, namely has eigenvalues with
non-zero real part. Presented in (Trélat and Zuazua 2015) for the finite-
dimensional LQ case (and actually for nonlinear problems by linearization
and smallness, as discussed in Part 2), the strategy has also been extended
in (Trélat et al. 2018b) to the PDE setting.

For the sake of clarity, let us sketch the idea of this strategy in the finite
dimensional case. The PDE setting can be dealt with in a similar way,
albeit with some minor technical changes, as done so in (Trélat et al. 2018b).
(Furthermore, the controllability assumption entailed by the Kalman rank
condition can be relaxed to a stabilizability assumption, as seen in the latter
paper.) We consider systems of the form

{
ẏ = Ay +Bu in (0, T ),

y(0) = y0,
(5.1)

where now A ∈ Rd×d(R) and B ∈ Rd×m(R), with d,m > 1 (and, typically,
d > m). We now consider the following optimal control problem (which,
can be made slightly more general, but we avoid doing so, for simplicity):

inf
u∈L2(0,T ;Rm)
y solves (5.1)

1

2

∫ T

0
‖y(t)− yd‖2 dt+

1

2

∫ T

0
‖u(t)‖2 dt. (5.2)

Here, yd ∈ Rd is given. The existence and uniqueness of a solution to (5.2)
requires no specific assumptions on A or B, unlike for turnpike, as seen just
below.

The turnpike property then naturally also holds for the unique optimal
pair (uT , yT ) solving (5.2), under similar stabilizability and detectability as-
sumptions. We shall assume a stronger property on the dynamics. Namely,
we suppose that the Kalman rank condition

rank
([
BAB . . . Ad−1B

])
= d

holds. The corresponding steady optimal control problem reads as

inf
(u,y)∈Rm×Rd
Ay+Bu=0

1

2
‖y − yd‖2 +

1

2
‖u‖2.
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Problem (5) admits a unique solution, since ker(A∗) ∩ ker(B∗) = {0} by
virtue of the Kalman rank condition. Then, writing the optimality systems
for both the optimal time-dependent triple (uT , yT , pT ) and the steady triple
(u, y, p), where uT ≡ B∗pT and u ≡ B∗p, and setting

δy(t) := yT (t)− y, δp(t) := pT (t)− p,
we see that δy(t) and δp(t) satisfy





δẏ(t) = Aδy(t) +BB∗δp(t) in (0, T ),

δṗ(t) = δy(t)−A∗δp(t) in (0, T ),

δy(0) = y0 − y,
δp(T ) = −p.

But, by setting z :=
[
δy>, δp>

]>
, this system can then be seen as a shooting

problem for the linear differential system

ż(t) = Hz(t), in (0, T ),

where the matrix H ∈ R2d×2d(R) (designating a Hamiltonian matrix) is
given by

H :=

[
A BB∗

Id −A∗
]
, (5.3)

and for which a part of the initial and final data are imposed. The shooting
problem consists in determining the initial condition δp(0) for which z(t),
starting at z(0) =

[
(y0 − y)>, δp(0)>

]
, satisfies δp(T ) = −p. The critical

observation is that, under the Kalman rank condition, the matrix H is hy-
perbolic, namely

Lemma 5.1. The matrix H in (5.3) is hyperbolic, in the sense that if λ ∈ C
is an eigenvalue of H, then Re(H) 6= 0. Moreover, if λ is an eigenvalue of H,
then so is −λ.

This is precisely what we have seen in Figure 2.4: the coupling in the
optimality system, stemming from the tracking term, instills a stabilizing
and symmetric structure. The proof of this lemma is in fact quite important
in the general strategy, so we sketch it.

Proof. Let E− (resp. E+) be the symmetric negative definite matrix (resp.,
the symmetric positive definite matrix) solution of the algebraic Riccati
equation (see (Vinter 2010)):

XA+A∗X +XBB∗X − Id = 0.

Note that uniqueness of solutions follows from the controllability assump-
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tion. Setting

P =

[
Id Id
E− E+

]

we see that the matrix P is invertible, and in fact

P−1HP =

[
A+BB∗E− 0

0 A+BB∗E+

]
.

Now the fact that the matrix A + BB∗E− has (complex) eigenvalues with
negative real parts is a known property of algebraic Riccati theory, due to
the fact that (A,B) satisfies the Kalman rank condition ((Vinter 2010)). On
another hand, subtracting the Riccati equations satisfied by E+ and E−, we
find

(E+ − E−)(A+BB∗E+) + (A+BB∗E−)∗(E+ − E−) = 0.

Since E+−E− is invertible, it follows that the eigenvalues of A+BB∗E+ are
the negative of those of A+BB∗E−. This concludes the proof.

The above proof motivates working in a different coordinate system in
view of understanding the turnpike asymptotics. In fact, the proof allows
to diagonalize M in a rather appropriate way. We consider the change of
variable

z(t) =

[
Id Id
E− E+

]
x(t),

to then find that x(t) satisfies

ẋ(t) =

[
A+BB∗E− 0

0 A+BB∗E+

]
x(t).

But now the above system, consisting of 2d equations, is purely hyperbolic,
namely it is governed by a matrix with eigenvalues with non-zero real part,
and is also symmetric. Thus, the first d equations represent a contracting
system forward in time, and the last d ones represent a contracting system
backward in time. To be more precise, setting x(t) = [ζ(t), η(t)], we find
that {

ζ̇(t) = (A+BB∗E−)ζ(t) in (0, T ),

η̇(t) = (A+BB∗E+)η(t) in (0, T ).

And since all the eigenvalues of A+BB∗E− have negative real parts, while
the ones of A+ BB∗E+ are the negative of those of A+ BB∗E−, it follows
that

‖ζ(t)‖ 6 c‖ζ(0)‖e−λt, ‖η(t)‖ 6 c‖η(T )‖e−λ(T−t)

for some c > 0 independent of (ζ, η) and T , and for every t ∈ [0, T ], where
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λ is the spectral abscissa of the matrix A+BB∗E−, namely

λ = −max
{

Re (µ)
∣∣∣ µ ∈ spec(A+BB∗E−)

}
> 0.

We thus recover the same decay rate as the one obtained via the strategy
presented in what precedes. We refer to (Trélat and Zuazua 2015), (Trélat
et al. 2018b) for technical details.

6. Dissipativity and measure turnpike

Up to now, we only focused on a characterization of the turnpike prop-
erty by means of a double-arc exponential decay estimate: when T � 1,
point-wise, the optimal triple is O

(
e−t + e−(T−t)) for all t ∈ [0, T ]. And

we refer to such an estimate as the exponential turnpike property. There
exist, however, weaker notions and characterizations, which warrant some
attention, in particular due to a breadth of existing techniques, and the
possibility of including state and control constraints. One of them is the so
called measure turnpike property, which states that for all ε > 0, the mea-
sure of the set of times t ∈ [0, T ] for which ‖yT (t) − y‖H + ‖uT (t) − u‖U
is larger than ε, is not ”too big”. It is noteworthy that in some settings,
a sufficient condition for this property to hold can be seen as an extension
of Lyapunov’s second method. This is the so called dissipativity of systems,
in the sense of Willems (Willems 1972) (see (Faulwasser, Korda, Jones and
Bonvin 2017) for a contemporary treatment). In other words, the study of
dissipativity can be seen, to a certain regard, as a Lyapunov-akin strategy
(namely, an extension of Lyapunov to an open-loop setting) to proving the
turnpike property.

Let us provide some more details to this discussion in the context of
PDEs, for which we follow (Trélat and Zhang 2018). (In fact, in (Trélat and
Zhang 2018), the results are stated and proven for more general nonlinear
systems, but the theory being local around a steady pair, we focus on the
linear case here.) We borrow the notations from previous sections, and
consider

inf
u ∈ L2(0,T ;U )
y solves (6.2)

∫ T

0
f0(y(t), u(t)) dt

︸ ︷︷ ︸
:=JT (u)

, (6.1)

where {
∂ty = Ay +Bu in (0, T ),

y|t=0
= y0.

(6.2)

Here, we assume that f0 ∈ C0(X × U ;R) is bounded from below, convex,
and coercive with respect to the X×U –norm; once again, A is supposed to
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generate a continuous semigroup on H , and B ∈ L (U ,H ). Accordingly,
as before, for T > 0, (6.2) admits a unique (mild) solution y ∈ C0([0, T ]; H )
for data y0 ∈H and u ∈ L2(0, T ; U ), whereas, due to continuity, convexity,
and coercivity, (6.1) can be shown to admit a minimizer by the direct method
in the calculus of variations. The corresponding steady optimal control
problem then reads

inf
(u,y)∈U ×X
Ay+Bu=0

f0(y, u). (6.3)

We denote Js(u) := f0(y, u). We shall assume that (6.3) admits a solution
(see (Trélat and Zhang 2018) for more details).

We shall distinguish pairs (u, y) which are optimal and admissible for
(6.1). Namely, we say that the pair (u, y) ∈ L2(0, T ; U ) × C0([0, T ]; H ) is
admissible for (6.1) if ∂ty = Ay + Bu for t ∈ (0, T ). We say that the pair
(u, y) is optimal if, in addition to being admissible, JT (u) 6 JT (v) for all
functions v ∈ L2(0, T ; U ), and y(0) = y0 hold. In particular, any optimal
steady pair (y, u) for (6.3) is also admissible for (6.1).

We may begin by defining the relevant notions of dissipativity.

Definition 6.1 (Dissipativity). Let T > 0. We say that (6.1) is dissi-
pative at an optimal steady pair (u, y) solving (6.3), if there exists a storage
function S : H → R, locally bounded and bounded from below, such that
for any T > 0, the inequality

S(y(τ))− S(y(0)) 6
∫ τ

0

(
f0(y(t), u(t))− f0(y, u)

)
dt

holds for any τ ∈ [0, T ] and for any optimal pair (u, y) solution to (6.1).
We say that (6.1) is strictly dissipative at an optimal steady pair (u, y)

solving (6.3), if there exists a nonnegative function α ∈ C0([0,+∞)), with
α strictly increasing and16 α(0) = 0, and a storage function S : H → R,
locally bounded and bounded from below, such that for any T > 0, the
inequality

S(y(τ))− S(y(0)) 6
∫ τ

0

(
f0(y(t), u(t))− f0(y, u)

)
dt

−
∫ τ

0
α

(∥∥∥
(
y(t)− y, u(t)− u

)∥∥∥
H ×U

)
dt

holds for any τ ∈ [0, T ] and for any optimal pair (u, y) solution to (6.1).

Let us provide some comments regarding the above definitions. The func-
tion ω(y, u) := f0(y, u) − f0(y, u), with respect to which dissipativity is
defined, is usually referred to as the supply rate function. We then note that

16 Such functions α are said to be of class K.
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for dissipativity to hold, it suffices to find a C1, non-negative function S
satisfying

d

dt
S(y(t)) 6 ω(y(t), u(t))

for all t ∈ [0, T ] along optimal pairs (y, u). This makes the storage function
S akin to a Lyapunov functional, the difference being the presence of the
supply rate ω, which accounts for the energy input in the system due to the
presence of an open-loop control u(t). (Recall that the Lyapunov stability
method applies to systems without inputs: ẏ(t) = f(y(t)).) The supply
rate indicates, in some sense, the total external energy added to the system
at time t. And so, there can be no internal ”creation of energy”, rather,
only internal dissipation of energy. Strict dissipativity entails a stronger
differential inequality, of the form

d

dt
S(y(t)) 6 ω(y(t), u(t))− α

(∥∥∥
(
y(t)− y, u(t)− u

)∥∥∥
H ×U

)

for all t ∈ [0, T ]. While sufficient and illustrative, this is not a necessary
assumption as looking for a differentiable storage function is rather restric-
tive. In fact, as discussed in (Trélat and Zhang 2018), the value function for
(6.1) is always a storage function, but is not differentiable for many optimal
control problems. The following theorem holds.

Theorem 6.2 ((Trélat and Zhang 2018)). Suppose that there exists
some constant M > 0 such that for any T > 0, any optimal pair (uT , yT )
for (6.1) is such that

‖yT (t)‖H + ‖uT (t)‖U 6M

for a.e. t ∈ [0, T ]. Let (u, y) be some solution to (6.3).

1. Suppose furthermore that (6.1) is dissipative at (u, y). Then

JT

T
= Js +O

(
1

T

)
as T → +∞.

2. Suppose furthermore that (6.1) is strictly dissipative at (u, y). Then
for every ε > 0, there exists κ(ε) > 0 such that

meas

({
t ∈ [0, T ]

∣∣∣∣∣
∥∥∥
(
yT (t)− y, uT (t)− u

)∥∥∥
H ×U

> ε

})
6 κ(ε)

holds for all T > 0, where (uT , yT ) is an optimal pair for (6.1).

The first result in the above theorem is usually referred to as the integral
turnpike property – time averages of the functional converge to the stationary
functional as T → +∞. This ergodic-like pattern is a relatively weak prop-
erty and can be proven by means of a variety of techniques (mainly energy
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estimates; see however (Mazari and Ruiz-Balet 2020) for a proof by means of
so-called quantitative inequalities in the presence of state constraints). On
the other hand, the second property is referred to as the measure turnpike
property, and states that the measure of the set of times where an optimal
control and state pair are away from some optimal steady control and state
pair is not ”too big”.

This being said, the constant κ(ε) is of the form C/α(ε) for some constant
C independent of ε and T . Since α is increasing and α(0) = 0, we see that as
ε goes to 0, the upper bound for the measure of the set grows. Furthermore,
it is not apparent specifically where the time instances at which the discrep-
ancies of the time-depending pairs to the steady pairs are small, are located.
In comparison, the exponential turnpike property provides the exact distri-
bution of these time instances. Note that the exponential turnpike property
implies both of the above statements. And while it is not always clear how
to find a storage function S for PDEs beyond LQ problems, wherein suffi-
cient conditions are known for the exponential turnpike property to hold,
we do refer the reader to (Trélat and Zhang 2018, Section 4), where the
authors devise a clever duality method for finding a storage function. We
refer to (Brogliato, Lozano, Maschke and Egeland 2007) for further insights
regarding sufficient conditions for storage functions – we emphasize that this
is a delicate question in general.

Remark 6.3 (Constraints). Note that in (Trélat and Zhang 2018), the
authors impose constraints on the admissible pairs (u, y) within the optimal
control problem, namely, that (u(t), y(t)) lie in a compact subset of U ×H
for a.e. t ∈ [0, T ]. In particular, this would mean that the assumption in
the statement is satisfied.

Remark 6.4 (Enhancing measure turnpike). Strict dissipativity is a
rather strong assumption for ensuring the measure turnpike property, which,
as said above, is rather weak when compared to the exponential turnpike
property. But actually, under the assumption of strict dissipativity, in
(Trélat 2020) it is shown that for almost every s ∈ (0, 1), yT (sT ) → y
and uT (sT ) → u as T → +∞, which is a significantly stronger result. In
fact, it can be said that, in some sense, the turnpike property is engraved
within the notion of strict dissipativity.

Proof. We focus on proving the measure turnpike property only. Let T > 0
and let (uT , yT ) be any optimal pair for (6.1). For ε > 0, let us denote

Qε,T :=

{
t ∈ [0, T ]

∣∣∣∣∣
∥∥∥
(
yT (t)− y, uT (t)− u

)∥∥∥
H ×U

> ε

}
.
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We readily see that

meas(Qε,T ) =

∫ T

0
1Qε,T

dt =
1

α(ε)

∫ T

0
α(ε)1Qε,T

dt. (6.4)

Since α is a non-decreasing function, we find that

1

α(ε)

∫ T

0
α(ε)1Qε,T

dt 6 1

α(ε)

∫ T

0
α

(∥∥∥
(
y(t)− y, u(t)− u

)∥∥∥
H ×U

)
dt.

(6.5)
On another hand, by strict dissipativity, we have

1

α(ε)

∫ T

0
α

(∥∥∥
(
y(t)− y, u(t)− u

)∥∥∥
H ×U

)
dt 6 JT (uT )− TJs(u)

+ S(yT (0))− S(yT (T )) .
(6.6)

And then, using the fact that an optimal steady pair (u, y) is admissible for
(6.1), we also find

JT (uT ) 6 JT (u) =

∫ T

0
f0(u, y) dt = TJs(u). (6.7)

Plugging (6.7) in (6.6), we find

1

α(ε)

∫ T

0
α

(∥∥∥
(
y(t)− y, u(t)− u

)∥∥∥
H ×U

)
dt 6 S(yT (0))− S(yT (T )).

Now since yT (t) is bounded by assumption, and S is locally bounded, there
exists a constant C = C(M) > 0 (depending only on M , and independent
of T and ε) such that |S(y)| 6 C for all y ∈H . And so, we find that

1

α(ε)

∫ T

0
α

(∥∥∥
(
y(t)− y, u(t)− u

)∥∥∥
H ×U

)
dt 6 2C. (6.8)

Whence, combining (6.4), (6.5), and (6.8), we deduce that

meas(Qε,T ) 6 2C

α(ε)
,

as desired.

The theory of dissipativity has been applied for obtaining turnpike results
for discrete-time, finite-dimensional systems, as well as LQ problems in fi-
nite dimensions ((Damm, Grüne, Stieler and Worthmann 2014), (Grüne and
Müller 2016), (Grüne, Pirkelmann and Stieler 2018), (Grüne and Guglielmi
2018), (Grüne, Kellett and Weller 2017), (Grüne and Guglielmi 2021), (Faulwasser,
Flaßkamp, Ober-Blöbaum and Worthmann 2019), (Faulwasser, Flaßkamp,
Ober-Blöbaum and Worthmann 2021a), (Gugat 2021)). The results in these
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works are mostly measure turnpike properties (or cardinal turnpike, in the
discrete-time setting), for continuous-time and discrete-time respectively,
and can be enhanced to exponential turnpike under stabilizability and de-
tectability assumptions. We refer also the reader to the survey (Faulwasser
and Grüne 2020) for an in-depth overlook and bibliography of this theory,
which we only touched upon.

7. Beyond

We tried to provide an all-encompassing review of existing results regarding
turnpike for LQ problems for partial differential equations. There are several
topics that we did not present in great depth, and related open problems.

7.1. Third proof of exponential turnpike

The strategies we presented in what precedes are, of course, not definitive
in the linear turnpike theory. In particular, in (Grüne et al. 2020b), (Grüne
et al. 2019), the authors derive the exponential turnpike property for LQ
problems for abstract linear PDEs (see (Grüne, Schaller and Schiela 2021) for
an extension to semilinear parabolic PDEs by linearization and smallness, a
strategy presented in the subsequent section), written in the canonical form
ẏ = Ay + Bu, under the same stabilizability and detectability assumptions
for (A,B,C) we made above. Note that the framework of these papers
accounts for possibly unbounded control operators B; these need only be
assumed admissible, thus covering boundary control systems (see (Tucsnak
and Weiss 2009) for more detail on these notions). In these works, the
authors write the entire optimality systems as a linear operator equation
in Bochner spaces; for the time-dependent optimal triple (uT , yT , pT ) for
instance, one has




C∗C −∂t −A∗
0 ΨT

∂t −A −BB∗
Ψ0 0




︸ ︷︷ ︸
:=MT

[
yT
pT

]
=




C∗Cyd
0
0
y0


 .

Here, C0([0, T ]; H ) 3 Ψty := y(t) ∈ H for t ∈ [0, T ]. Defining the pertur-
bation variables δy(t) := yT (t)− y and δp(t) = pT (t)− p, one then finds

MT

[
δy
δp

]
=




0
−p
0

y0 − y


 .
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The authors can then, using mostly energy estimates, first prove an estimate
of the form

‖δy(t)‖H + ‖δp(t)‖H
6 c

∥∥M−1
T

∥∥
L (L2(0,T ;H ),C0([0,T ];H ))

(
e−λt + e−λ(T−t)

)(
‖p‖H +

∥∥y0 − y
∥∥

H

)
.

The stabilizability and detectability assumptions are then used to prove that
M−1
T is uniformly bounded with respect to T , from which the exponential

turnpike property follows. Besides the upper bound, the decay rate λ > 0
also depends on M−1

T . Hence the uniform bound on this inverse is needed
for a uniform upper bound and a uniform decay rate.

7.2. Turnpike in optimal shape design

In (Lance, Trélat and Zuazua 2020) (see also (Trélat, Zhang and Zuazua
2018a) for related results), measure turnpike has been shown also for shape
optimization problems of the form

inf
ω(·)∈Uγ

y solves (7.1)

1

T

∫ T

0
‖y(t)− yd‖2L2(Ω) dt,

where 



∂ty −∆y = 1ω(t) in (0, T )× Ω,

y = 0 in (0, T )× ∂Ω,

y|t=0
= y0 in Ω.

(7.1)

Here Uγ := {ω ⊂ Ω
∣∣ meas(ω) 6 γ meas(Ω)} denotes the set of admissible

shapes, for a given γ ∈ (0, 1). The setup of this problem is quite in the spirit
of the original problem regarding Navier-Stokes shape design discussed in
the introduction.

In (Lance et al. 2020), the authors convexify the problem by relaxation
(namely, by considering the convex closure of Uγ in the L∞ weak-* topol-
ogy, which roughly translates to replacing 1ω(t) by a bounded potential
a(t) ∈ [0, 1] with mass 6 γ meas(Ω)), and make use of techniques inspired
by the calculus of variations to prove measure and integral turnpike prop-
erties for the optimal shapes. A proof of the exponential turnpike property
remains an open problem. All in all, a complete theory of turnpike for shape
optimization problems has not been established as of yet.

7.3. Unsteady turnpike

Finally, let us comment on the fundamental notion of turnpike we deal with
in this work. The definition of the turnpike property we had considered
entails a proximity of time-dependent optimal strategies to the associated
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steady ones. But this definition does not paint the whole picture. First
of all, it could happen that the turnpike is not unique (as it is the case in
some nonlinear problems, as seen in the subsequent section). Sometimes,
the turnpike may not even be of a steady nature.

The latter can even occur in linear problems. Let us corroborate with
some more details. An example is the artifact which appears whenever one
considers time-dependent, periodic running targets yd(t) in the LQ prob-
lem, as noted in (Samuelson 1976), (Rapaport and Cartigny 2004), (Zanon,
Grüne and Diehl 2016) for finite-dimensional systems. Suppose for instance
that yd ∈ C0([0,+∞); H ) is periodic of period π• > 0, namely,

yd(t+ π•) = yd(t), for t > 0.

One can then consider the standard LQ problem for one’s favorite linear
PDE, written in the canonical form ∂ty = Ay+Bu. And under similar sta-
bilizability and detectability assumptions for the underlying PDE dynamics
(A,B) and observation operator C, the authors in (Trélat et al. 2018b).
show that the exponential turnpike property holds, where now the turnpike
is given by the unique triple (uπ, yπ, pπ) solving





∂tyπ = Ayπ +BB∗pπ in (0, π•),

−∂tpπ = A∗pπ − C∗C(yπ − yd) in (0, π•),

yπ |t=0
= yπ |t=π• ,

pπ |t=0
= pπ |t=π• ,

with

uπ(t) ≡ B∗pπ(t) for a.e. t ∈ [0, π•].

To our knowledge, the taxonomy of different turnpikes which could occur
depending on the choice of functional and underlying dynamics has not yet
been proposed or established. As a general principle, the turnpike can be any
trajectory or any invariant set of the system. For instance, in (Trélat 2020),
the turnpike is a monotonically increasing trajectory, exemplified in practical
applications by the motion of a medium (400m) distance runner ((Aftalion
and Trélat 2021)). In such applications, the velocity of the runner is essen-
tially constant from beginning to end, but the position of the runner evolves
in a monotonic fashion. A more complete picture on the structure and
reasons behind this artifact may be found in (Pighin and Sakamoto 2020),
relying on the Kalman decomposition, which ensures that the exponential
turnpike property is inherent to the observable components of the under-
lying system. For infinite-dimensional systems, these issues have not been
thoroughly explored, and merit further attention. Monotonic trajectories of
this kind are a hallmark for systems arising in fluid mechanics – they can be
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essentially laminar. We are not aware if such turnpike questions have been
studied in a controlled scenario.

0 Tε T − ε

π•

Figure 7.8: The periodic turnpike property: the (norm of the) optimal trajectory
yT (t) (green) stays exponentially close to the periodic turnpike trajectory yπ(t) of period
π• (gray).

7.4. Even further in the finite-dimensional case

An extensive theory regarding cardinal and measure-like turnpike properties
for finite-dimensional discrete and continuous time systems has been devel-
oped independently by Zaslavski in a series of works (see (Zaslavski 2005),
(Zaslavski 2007), (Zaslavski 2015) and the references therein). In the finite
dimensional case, dynamical systems techniques based on stable manifold
theory have also been used and developed for proving the exponential turn-
pike property ((Sakamoto, Pighin and Zuazua 2019)). Further links with
systems theory are established in (Heiland and Zuazua 2020), and addi-
tional direct strategies for proving exponential turnpike properties for finite
dimensional systems may be found in (Lou and Wang 2019).
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PART TWO

Nonlinear theory

The case in which the underlying constraint in the optimal control problem
is a nonlinear PDE is rather different. It requires a case-by-case study,
and one cannot expect to provide a turnpike theory without any smallness
assumptions encompassing all PDE systems. This is, of course, a problem
which transcends many other fields and topics, not just optimal control of
PDEs. We emphasize that this theory is far from mature, and many open
problems persist, even in some relatively simple cases.

8. Linearization and smallness

One can expect, as done for a variety of different control concepts, to transfer
the linear results to a nonlinear setting by means of linearization and fixed
point arguments, provided some smallness assumptions on the data. In
fact, we can first prove a turnpike property for the optimality system, under
the condition that the initial and final states, for the forward and adjoint
state respectively, are close enough to the stationary forward and dual state,
respectively. We will also see that this result applies to global minimizers of
the cost functional, at least in the case that the running target yd is small
enough. In such a case, one can also ensure that the turnpike is unique.

We thus query the validity of the turnpike property for the semilinear
heat equation





∂ty −∆y + f(y) = u1ω in (0, T )× Ω,

y = 0 in (0, T )× ∂Ω,

y|t=0
= y0 in Ω,

(8.1)

where y0 ∈ L2(Ω). Here and in what follows, we assume that

f ∈ C2(R), with f ′ > 0 and f(0) = 0.

A canonical example is the cubic nonlinearity f(y) = y3 in dimensions d 6 3.
Under these assumptions, system (8.1) is well-posed, in the sense that given
any y0 ∈ L2(Ω) and u ∈ L2((0, T ) × ω), there exists a unique solution
y ∈ C0([0, T ];L2(Ω)) ∩ L2(0, T ;H1

0 (Ω)). Such a result can be shown by
employing a fixed point argument, making use of the dissipative nature of
the nonlinearity to obtain global results (see (Pighin 2021, Appendix B) and
the references therein).
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We may thus consider the following optimal control problem

inf
u∈L2((0,T )×ω)
y solves (8.1)

φ(y(T )) +
1

2

∫ T

0
‖y(t)− yd‖2L2(ω◦)

dt+
1

2

∫ T

0
‖u(t)‖2L2(ω) dt

︸ ︷︷ ︸
:=JT (u)

,

(8.2)
where yd ∈ L2(ω◦), with

φ(y(T )) :=
〈
pT , y(T )

〉
L2(Ω)

for a given and fixed pT ∈ L2(Ω). The corresponding steady optimal control
problem consists in solving

inf
u∈L2(ω)

y solves (8.4)

‖y − yd‖2L2(ω◦)
+ ‖u‖2L2(ω), (8.3)

where the underlying PDE constraint is given by the semilinear controlled
Poisson equation {

−∆y + f(y) = u1ω in Ω,

y = 0 on ∂Ω.
(8.4)

In both cases, one can also ensure the existence of solutions (minimizers)
by the direct method in the calculus of variations. Uniqueness can only
be guaranteed under smallness assumptions on the target yd; this will be a
major plotline in what follows. We can also readily write the corresponding
optimality systems for the evolutionary triple (uT , yT , pT ) and the steady
one (u, y, p). As per (Ito and Kunisch 2008, Chapter 1), the optimality
systems read as





∂tyT −∆yT + f(yT ) = pT 1ω in (0, T )× Ω,

∂tpT + ∆pT − f ′(yT )pT = (yT − yd)1ω◦ in (0, T )× Ω,

yT = pT = 0 in (0, T )× ∂Ω,

yT |t=0
= y0 in Ω,

pT |t=T = pT in Ω,

(8.5)

as well as 



−∆y + f(y) = p1ω in Ω,

−∆p+ f ′(y)p = −(y − yd)1ω◦ in Ω,

y = p = 0 on ∂Ω.

(8.6)

Of course, once again, uT ≡ pT 1ω and u ≡ p1ω. But, due to the nonlinearity
of the problems under consideration, the methods presented for the linear
theory cannot be applied directly. Hence, we can seek to test a local theory
around a given steady state optimal control-state pair. To this end, we



Turnpike in optimal control of PDEs, ResNets, and beyond 59

define the perturbation variables

δy := yT − y, δp := pT − p.

Then, (δy, δp) would satisfy




∂tδy −∆δy + f(δy) = δp1ω in (0, T )× Ω,

∂tδp+ ∆δp− g(δy, δp) = δy1ω◦ in (0, T )× Ω,

δy = δp = 0 in (0, T )× ∂Ω,

δy|t=0
= δy0 in Ω,

δp|t=T = δpT in Ω,

(8.7)

where δy0 := y0− y and δpT := pT − p, and moreover, the nonlinearities are

f(δy) := f(y + δy)− f(y),

g(δy, δp) := f ′(y + δy)(p+ δp)− f ′(y)p.

Since our aim is to build a pair (uT , yT ) fulfilling the turnpike property,
namely such that (uT , yT ) ∼ (u, y) in the sense of the previous section,
in the (δy, δp) coordinates, this is equivalent to ensuring (δy, δp) ∼ (0, 0).
Furthermore, since the latter are perturbation variables, it is natural to look
at the linearized version of the nonlinear system (8.7). Namely, we would
look at the first order Taylor expansion of f and g near (δy, δp) = (0, 0),
which, due to the form of these nonlinearities, corresponds to





∂tδy −∆δy + f ′(y)δy = δp1ω in (0, T )× Ω,

∂tδp+ ∆δp− f ′(y)δp = δy1ω◦ + f ′′(y)pδy in (0, T )× Ω,

δy = δp = 0 in (0, T )× Ω,

δy|t=0
= δy0 in Ω,

δp|t=T = δpT in Ω.

(8.8)

The following result can then be shown to hold.

Theorem 8.1 ((Porretta and Zuazua 2016)). Suppose that f ∈ C2(R),
f ′ > 0 and d 6 3. Let (y, p) ∈ (H1

0 (Ω) ∩ L∞(Ω))2 be some solution17 to the
optimality system (8.6). Suppose that there exist C > 0 and λ > 0 such
that for any T > 0 and (δy0, δpT ) ∈ L∞(Ω) × L∞(Ω), the unique solution
(δy, δp) to (8.8) satisfies the turnpike property

‖δy(t)‖L∞(Ω) + ‖δp(t)‖L∞(Ω) 6 C
(
e−λt + e−λ(T−t)

)

for all t ∈ [0, T ]. Then, there exists some ε > 0 (independent of T ) such

17 Again, such a solution exists due to the fact that (8.6) is the Euler-Lagrange equation
for a minimization problem.
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that for all data (y0, pT ) ∈ L∞(Ω)× L∞(Ω) satisfying
∥∥y0 − y

∥∥
L∞(Ω)

+
∥∥pT − p

∥∥
L∞(Ω)

6 ε,

there exists a solution (yT , pT ) to the optimality system (8.5) which satisfies

‖yT (t)− y‖L∞(Ω) + ‖pT (t)− p‖L∞(Ω) 6 C
(
e−λt + e−λ(T−t)

)

for all t ∈ [0, T ].

Remark 8.2. The assumption d 6 3 is not essential – should we be work-
ing with power-type nonlinearities of the form f(s) = |s|p−1s, in which case
the appropriate functional space would be H1

0 (Ω) ∩ Lp+1(Ω).

Proof. The proof may be found in (Porretta and Zuazua 2016).

The above theorem states that there exists a solution to the nonlinear
optimality system (8.5) for which the turnpike property holds. Thus, the
result does not have the nature we expect – in other words, it does not
apply to the minimizers of the functional JT under consideration in (8.2).
Moreover, the statement assumes that the turnpike property is satisfied by
the linearized optimality system. As we shall see just below, this theorem
applies at least when the target yd is small enough, in the sense that, first of
all, the steady optimal control problem has a unique minimizer, which is also
small, and, second of all, (8.8) satisfies the exponential turnpike property.
In this special case, the minimizer of the parabolic optimal control problem
also turns out to be unique, and thus coincides with the solution of the
optimality system.

8.1. Small targets.

Let us now consider the particular case where both the target yd and the
initial datum y0 are small in L2, and where ω◦ = Ω (we comment on this
assumption in Remark 8.4). In this case, one can actually show that 1). the
optimal pair for the steady-state problem is unique, and 2). the linearized
optimality system satisfies the turnpike property. These conditions would
thus ensure that the turnpike property is satisfied by the linearized optimal-
ity system (8.8), thus ensuring the validity of the hypothesis in Theorem
8.1.

To see why item 2). in the above discussion would hold, denoting

%(x) := 1− f ′′(y(x))p(x) for x ∈ Ω,

a clever observation is that (8.8) is an optimality system for the LQ problem
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(thus, a necessary and sufficient condition)

inf
v∈L2((0,T )×ω)
ζ solves (8.10)

1

2

∫ T

0

∫

Ω
%(x)ζ(t, x)2 dx dt+

1

2

∫ T

0

∫

ω
v(t, x)2 dx dt, (8.9)

where the underlying PDE is




∂tζ −∆ζ + f ′(y)ζ = v1ω in (0, T )× Ω,

ζ = 0 in (0, T )× ∂Ω,

ζ|t=0
= δy0 in Ω.

(8.10)

And turnpike holds for the above LQ problem whenever there is some δ > 0
such that

%(x) > δ > 0 for x ∈ Ω.

We shall see just below that this can be ensured precisely if ‖yd‖L2(Ω) is
small enough, as this would entail that both y and p are small in L∞(Ω).
Let us briefly sketch as to why such smallness assumptions would yield the
uniqueness of steady minimizers per 1), and, all the while, %(x) > 0, as
desired.

• Steady functional is strictly convex for small controls. We claim that
the functional Js, defined in the steady optimal control problem (8.3),
is strictly convex whenever the control input u ∈ L2(ω) is small enough
in Lp(Ω), for some p > d/2. Let us support this claim by showing that
the Hessian is positive definite for such controls. Following (Casas and
Mateos 2002, Proposition 2.3), (Casas and Tröltzsch 2002), we find

J ′′
s (u)v1v2 =

∫

Ω
ηv1ηv2 dx+

∫

ω
v1v2 dx−

∫

Ω
f ′′(y)p ηv1 ηv2 dx, (8.11)

for any u ∈ L2(ω), where y ∈ H1
0 (Ω) denotes the corresponding solution

to (8.4), p ∈ H1
0 (Ω) is the adjoint steady state, solution to
{
−∆p+ f ′(y)p = y − yd in Ω,

p = 0 on ∂Ω,

while ηvj ∈ H1
0 (Ω) are the solutions of the linearized steady equation

in the directions vj ∈ L2(ω), namely
{
−∆ηvj + f ′(y)ηvj = vj1ω in Ω,

ηvj = 0 on ∂Ω.

Whenever u is small enough in Lp(Ω) for some p > d/2, in conjunction
with the monotonicity of f , puts us in the framework of classic elliptic
regularity which ensures that y is small in H1

0 (Ω) ∩ L∞(Ω). In turn,
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the same can be said of p, namely p is small in H1
0 (Ω)∩L∞(Ω), due to

the fact that y ∈ L∞(Ω) and f ′ > 0. Therefore, since

‖ηv‖H1
0 (Ω) 6 C1‖v‖L2(ω), (8.12)

for some C1 = C1(y, f) > 0 by Lax-Milgram, when v1 = v2 = v, the
term

−
∫

Ω
f ′′(y)p η2

v dx

in (8.11) can be absorbed by
∫

ω
v2 dx

thanks to the fact that y ∈ L∞(Ω) and the smallness of p in L∞(Ω).
Indeed, by using the Poincaré inequality in (8.12), and since f ∈ C2(R)
and y ∈ L∞(Ω), we find

J ′′
s (u)vv >

∫

Ω
η2
v dx+

∫

ω
v2 dx− C

(
f, ‖y‖L∞(Ω)

)
‖p‖L∞(Ω)

∫

Ω
η2
v dx

>
∫

Ω
η2
v dx+

(
1− C2‖p‖L∞(Ω)

) ∫

ω
v2 dx, (8.13)

for some C2 = C2(f, y,Ω) > 0. Taking ‖p‖L∞(Ω) small enough renders
the lower bound in (8.13) strictly positive. Hence, Js(u) is strictly
convex whenever u is taken small enough in Lp(Ω) for some p > d/2.

• Steady optima (u, y) live in a ball of radius ‖yd‖L2(Ω). We observe, by
comparing the steady functional evaluated at the minimizer with that
at 0, that any steady minimizer (u, y) satisfies

‖y − yd‖2L2(Ω) + ‖u‖2L2(ω) 6 ‖yd‖2L2(Ω). (8.14)

So assuming that the target yd is small enough in L2(Ω) would ensure
the smallness of the optimal control u in L2(ω). And since d 6 3, we
have that u ∈ Lp(ω) for some p > d/2. Therefore, u is small in Lp(ω)
whenever yd is small in L2(Ω).

• Uniqueness of minimizers for small targets. From the previous 2 items,
we gather that 1). whenever yd is small enough in L2(Ω), any mini-
mizer u of Js is small enough in Lp(ω) for some p > d/2, and 2). the
functional Js is strictly convex over the set of controls which are small
enough in Lp(ω) for some p > d/2. This thus ensures the uniqueness of
minimizers of Js whenever ‖yd‖L2(Ω) is small enough.

Hence, in this case, the theorem stated before can be enhanced to read as
follows18.

18 The smallness condition on the target may manifest in slightly different ways depending
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Theorem 8.3 ((Porretta and Zuazua 2016)). Suppose that f ∈ C2(R)
with f ′ > 0 and d 6 3. Suppose that ω◦ = Ω. Then, there exists some ε > 0
and λ > 0 such that for all T > 0, for all yd ∈ L2(Ω), and for all data
(y0, pT ) ∈ L∞(Ω)× L∞(Ω) satisfying

‖yd‖L2(Ω) +
∥∥y0 − y

∥∥
L∞(Ω)

+
∥∥pT − p

∥∥
L∞(Ω)

6 ε,

there exists a solution to the optimality system (8.5) which satisfies

‖yT (t)− y‖L∞(Ω) + ‖pT (t)− p‖L∞(Ω) 6 C
(
e−λt + e−λ(T−t)

)

for all t ∈ [0, T ], where (y, p) are the unique solutions to (8.6).

Remark 8.4 (Localized observations). Note that in the above deriva-
tion, we had assumed ω◦ = Ω. If ω◦ ( Ω, then the weight % appearing in
the optimality system, and hence in (8.9), will rather read as

%(x) := 1ω◦(x)− f ′′(y(x))p(x) for x ∈ Ω.

In particular, the smallness of the optimal steady state and adjoint state
are not sufficient to prescribe the sign of %, since there is no reason to say,
a priori, that these states will be supported within ω◦. The question when
ω◦ ( Ω then boils down to ensuring that the functional in (8.9) admits a
minimizer, even if the weight % might change sign. We believe that, due
to the smallness of y and p in L∞(Ω), the set where % may be negative
can, in some sense, be ”absorbed” and rendered negligible. But this point
requires further rigorous analysis, which could call for the use of Carleman
inequalities.

In both of the aforementioned results, the turnpike property is satisfied
by one solution of the optimality system (8.5). Since the functional JT in
the optimal control problem (8.2) may be not convex, we cannot directly
assert that such a solution of the optimality system is the unique minimizer
(optimal control) for (8.2). Whether the turnpike property actually holds for
the optima under smallness conditions on the initial datum is not indicated
in the above statements. An answer to this question is provided in the recent
work (Pighin 2021), in which it is shown that this is indeed the case for the
optimal control-state pair (uT , yT ) for (8.2).

Let us henceforth suppose that pT ≡ 0 in (8.2), namely we work with
φ ≡ 0. We begin by stating and proving the following result, which ensures
that under appropriate smallness assumptions on y0 and yd, the functional
JT defined in the optimal control problem (8.2) admits a unique minimizer

on the nature of the nonlinearity. For instance, in the context of the Navier-Stokes sys-
tem (quadratic nonlinearity), the smallness condition involves the discrepancy between
the target yd and the turnpike y (Zamorano 2018).
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uT . This would then imply the turnpike property for the solution to (8.2),
namely the unique minimizer to JT .

Proposition 8.5 ((Pighin 2021)). There exists a δ > 0 such that for
any T > 0, and for any y0 ∈ L∞(Ω) and yd ∈ L∞(Ω) satisfying

∥∥y0
∥∥
L∞(Ω)

+ ‖yd‖L∞(Ω) 6 δ,

the problem (8.2) admits a unique solution uT ∈ L2((0, T )× ω). Moreover,
uT ∈ L∞((0, T )× ω).

The proof of the above proposition in turn is based on the following lemma,
also found in (Pighin 2021), which ensures that for bounded initial data y0

and target yd, any optimal control uT and corresponding state trajectory yT
are uniformly bounded with respect to T . Namely,

Lemma 8.6 ((Pighin 2021)). Let y0 ∈ L∞(Ω) and yd ∈ L∞(Ω) be
fixed. Then, there exists a constant

C = C
(∥∥y0

∥∥
L∞(Ω)

+ ‖yd‖L∞(ω◦)

)
> 0

such that for any T > 0, any optimal solution uT ∈ L2((0, T ) × ω) to
(8.2) satisfies uT ∈ L∞((0, T )× ω) as well as

‖uT ‖L∞((0,T )×ω) + ‖yT ‖L∞((0,T )×Ω)

6 C
(∥∥y0

∥∥
L∞(Ω)

+ ‖yd‖L∞(ω◦)

)
, (8.15)

where yT denotes the optimal state trajectory, unique solution to (8.1).
Moreover, ζ 7→ C(ζ) is non-decreasing as a function from [0,+∞) to (0,+∞),
with C(0) = 0.

We omit the proof, which is rather technical and relies on the construction
of suboptimal, quasi-turnpike controls – further details may be found in the
cited paper. We rather focus on proving Proposition 8.5.

Proof. First of all, an optimal control uT is bounded in space-time by
(Pighin 2021, Lemma 2.1) (see also the lemma just above). Let us thus
focus on proving the uniqueness of minimizers to JT . The proof is roughly
an adaptation of the discussion preceding Theorem 8.3 to the evolutionary
setting.

Consider y0 ∈ L∞(Ω) and yd ∈ L∞(Ω) such that

‖y0‖L∞(Ω) + ‖yd‖L∞(Ω) 6 1. (8.16)

We introduce a critical ball in L∞((0, T )× ω) by:

B :=

{
u

∣∣∣∣∣ ‖u‖L∞((0,T )×ω) 6 C
(∥∥y0

∥∥
L∞(Ω)

+ ‖yd‖L∞(ω◦)

)}
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where C(·) > 0 appears in (8.15)19. We look to prove the strict convexity
of the functional JT appearing in (8.2) in B. To this end, we prove that
its Hessian is positive definite. We proceed in doing so by noting that, as
in the elliptic case, the second order Gâteaux derivative of JT at some
u ∈ L∞((0, T )× ω) in a direction v ∈ L∞((0, T )× ω), reads as

J ′′
T (u)vv =

∫ T

0

∫

Ω
η2
v dx dt+

∫ T

0

∫

ω
v2 dx dt−

∫ T

0

∫

Ω
f ′′(y)ϕη2

v dx dt,

where y solves (8.1) with control u, ηv solves the linearized forward system




∂tη −∆η + f ′(y)η = v1ω in (0, T )× Ω,

η = 0 on (0, T )× ∂Ω,

η|t=0
= 0 in Ω,

whereas ϕ solves the linearized adjoint system




−∂tϕ−∆ϕ+ f ′(y)ϕ = y − yd in (0, T )× Ω,

ϕ = 0 in (0, T )× ∂Ω,

ϕ|t=T = 0 in Ω.

(8.17)

Since f ′ > 0, by standard energy estimates for the linear heat equation it
follows that

‖ηv‖L2((0,T )×Ω) 6 C0(Ω, f) ‖v‖L2((0,T )×ω) (8.18)

for some constant C0(Ω, f) > 0 independent of T . Now let u ∈ B. By a
crafted comparison argument (see (Pighin 2021)) applied to (8.1) and (8.17),
we may find

‖y‖L∞((0,T )×Ω) + ‖ϕ‖L∞((0,T )×Ω) 6 C1

(∥∥y0
∥∥
L∞(Ω)

+ ‖yd‖L∞(Ω)

)
(8.19)

for some C1(Ω) > 0 independent of T . Hence, using estimates (8.18) and
(8.19), it follows that

∫ T

0

∫

Ω

∣∣f ′′(y)ϕ
∣∣ η2
v dx dt 6 C2

(∥∥y0
∥∥
L∞(Ω)

+ ‖yd‖L∞(Ω)

)∫ T

0

∫

ω
v2 dx dt,

where C2 = C2(Ω, f, f ′′) > 0 is independent of T , and we have used (8.16).

19 The constant C will be independent of any smallness constant 1� δ > 0 chosen in what
follows, due to the fact that it is non-decreasing with respect to ‖y0‖L∞(Ω)+‖yd‖L∞(ω◦)
(as per Lemma 8.6), and ‖y0‖L∞(Ω) + ‖yd‖L∞(ω◦) 6 1.
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Therefore,

J ′′
T (u)vv >

∫ T

0

∫

ω◦

η2
v dx dt

+
(

1− C2

(∥∥y0
∥∥
L∞(Ω)

+ ‖yd‖L∞(Ω)

))∫ T

0

∫

ω
v2 dx dt.

Hence, if ‖y0‖L∞(Ω) + ‖yd‖L∞(Ω) 6 δ for some 0 < δ � 1 small enough, we
can ensure that

J ′′
T (u)vv > 1

2

∫ T

0

∫

ω
v2 dx dt

holds for any v ∈ L∞((0, T ) × ω). Consequently, JT is strictly convex in
the ball B. In other words, JT has a unique minimizer in the ball B. Now
by Lemma 8.6, whenever

‖y0‖L∞(Ω) + ‖yd‖L∞(Ω) 6 δ � 1,

then clearly any given optimal control uT , namely any minimizer of JT , is
an element of B. Thus uT is a global minimizer to JT .

Both of the above results then lead to the following turnpike result for the
semilinear heat equation, without any smallness assumptions on the initial
data.

Theorem 8.7 ((Pighin 2021)). Let ε > 0 be fixed. Then, there exists
rε > 0 such that for every T > 0, y0 ∈ L∞(Ω), and for every yd ∈ L∞(Ω)
satisfying

‖yd‖L∞(Ω) 6 rε,

any uT solution (global minimizer) to (8.2) and corresponding solution yT
to (8.1) satisfy

‖yT (t)− y‖L∞(Ω) + ‖uT (t)− u‖L∞(ω) 6 Cεe
−λt + εe−λ(T−t) (8.20)

for all t ∈ [0, T ], for some constants Cε = C
(
ε,Ω, ω, y0

)
> 0 and λ > 0

independent of T .

Remark 8.8. Let us make a couple of comments regarding Theorem 8.7.

• Here, once again, (u, y) denotes the unique solution to (8.3) – unique-
ness follows precisely from the smallness of the target yd, as discussed
in what precedes. We also note that the decay rate λ > 0 is the same
as in the previous statements.

• Let us also comment briefly on the asymmetric nature of estimate
(8.20). Note that the statement of the above theorem does not re-
quire any smallness assumptions on the initial datum y0. Moreover,
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the constant multiplying the final arc e−λ(T−t) may be made arbitrar-
ily small, whereas the constant multiplying the initial arc e−λt will be
large whenever ε � 1. This is in part due to (8.14) and the smallness
of ‖yd‖L∞(Ω), as namely y ∼ yd ∼ 0 which yields the smallness of the
final arc, when the state yT (t) leaves the turnpike y to match the final
condition for the adjoint state. On the other hand, the initial condition
y0 can be arbitrarily large, which is reflected by the constant Cε.

8.2. Large targets, weaker turnpike

When the target yd is taken to be arbitrarily large, one can still obtain
asymptotic simplification (turnpike) results for the semilinear heat equation,
albeit with a significantly weaker rate of convergence when T → +∞.

Theorem 8.9 ((Pighin 2021)). Let y0 ∈ L∞(Ω) and yd ∈ L∞(ω◦) be
fixed. Then

1

T
inf

uT∈L2((0,T )×Ω)
yT solves (8.1)

JT (uT )
T→+∞−−−−−→ inf

u∈L2(Ω)
y solves (8.4)

Js(u).

Suppose in addition that y0 ∈ L∞(Ω) ∩H1
0 (Ω). Then, moreover,

‖∂tyT ‖L2((0,T )×Ω) 6 C

holds for some constant C > 0 independent of T , where yT denotes the
unique solution to (8.1) corresponding to any control uT optimal for JT .

Proof. We shall only provide a sketch of the main ideas. The details may
be found in (Pighin 2021). The proof relies on the following elements.

1. First of all, solely using the equation satisfied by yT and integration by
parts, one can find that

JT (uT ) =

∫ T

0
Js

(
−∆xyT (t, ·) + f(yT (t, ·))

)
dt

+
1

2

∫ T

0

∫

Ω
|∂ty(t, x)|2 dt dx (8.21)

+
1

2

∫

Ω

{∣∣∇y(T, x)
∣∣2 −

∣∣∇y0(x)
∣∣2

+ 2F
(
yT (T, x)

)
− 2F

(
y0(x)

)}
dx

holds, where

F (z) :=

∫ z

0
f(x) dx

designates the anti-derivative of f . (We note that in (Pighin 2021), the



68 Acta Numerica

author also assumes that ω = Ω precisely in this step, but this is not
needed.)

2. Using (8.21) and the nondecreasing character of f , one may then find
∣∣∣∣∣∣∣

inf
uT∈L2((0,T )×Ω)
yT solves (8.1)

JT (uT )− T inf
u∈L2(Ω)

y solves (8.4)

Js(u)

∣∣∣∣∣∣∣
6 C (8.22)

for some C > 0 independent of T . Indeed, (8.21) would yield

inf
uT∈L2((0,T )×Ω)
yT solves (8.1)

JT (uT ) > T inf
u∈L2(Ω)

y solves (8.4)

Js(u)

−
(

1

2

∫

Ω

∣∣∇xy0(x)
∣∣2 dx+

∫

Ω
2F
(
y0(x)

)
dx

)
,

whereas obtaining an appropriate reversed estimate to derive (8.22) is
in principle significantly simpler (see (Pighin 2021, Appendix D)).

To conclude this section, we also comment on what happens when the con-
trols are assumed to be time-independent. Following (Porretta and Zuazua
2016), we consider





∂ty −∆y + |y|p−1y = u(x)1ω in (0, T )× Ω,

y = 0 in (0, T )× ∂Ω,

y|t=0
= y0 in Ω,

(8.23)

with p > 1, and we consider

inf
u∈L2(ω)

y solves (8.23)

1

2

∫ T

0
‖y(t)− yd‖2L2(ω◦)

dt+
T

2
‖u‖2L2(ω). (8.24)

The corresponding steady analog reads as

inf
u∈L2(ω)

y solves (8.26)

1

2
‖y − yd‖2L2(ω◦)

+
1

2
‖u‖2L2(ω◦)

, (8.25)

where the underlying PDE constraint is the semilinear Poisson equation
{
−∆y + |y|p−1y = u1ω in Ω,

y = 0 on ∂Ω.
(8.26)

The following result can be shown by making use of Γ-convergence argu-
ments, the dissipativity of the semilinear heat equation, and taking advan-
tage of the fact that the controls under consideration are independent of
t.
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Theorem 8.10 ((Porretta and Zuazua 2016)). Let {uT }T>0 ⊂ L2(ω)
be a family of optimal controls for (8.24). Then, this family is relatively com-
pact in L2(ω) and any accumulation point u as T → +∞ is a solution of
the steady problem (8.25).

Analogous results have been shown for the Navier-Stokes equations set
in Ω ⊂ R2 in (Zamorano 2018), and also for shape optimization problems
for the linear heat equation in (Allaire, Münch and Periago 2010), with
both works again exploiting the same Γ-convergence arguments, for time-
independent controls. The proof in this setting is significantly simpler, and
vis-à-vis (Allaire et al. 2010) in particular, as mentioned at different points
in the text, a (quantitative) extension of this result to the setting of time-
dependent controls remain open.

We note that the uniqueness of the optimal control is not guaranteed
neither for the time-dependent problem, nor for the steady one. This is due
to the lack of convexity of the functionals under minimization, which stems
from the nonlinear character of the state equations. Thus the statement
above refers necessarily to the accumulation points of the family {uT }T>0

and its inclusion within the set of steady state controls.

9. A warning regarding non-uniqueness

As discussed in what precedes, whenever the running target yd is taken arbi-
trarily large in the context of semilinear problems, uniqueness of minimizers
to the corresponding steady optimal control problem cannot be guaran-
teed. Such a lack of uniqueness would namely mean that the turnpike is
not clearly or uniquely defined. As for most nonlinear optimization prob-
lems, non-uniqueness of minimizers may be stipulated due to possible lack
of convexity. The latter could stem from the nonlinear nature of the control
to state map. But this is, of course, not a sufficient argument to ensure
such a fact. Nevertheless, the recent work (Pighin 2020) shows that non-
uniqueness of minimizers may indeed occur for the steady optimal control
problem. This is demonstrated by designing a specific running target, which
is large, of course. We present these results and insights in what follows.

To stay close to the original material, let us consider the boundary control
problem. The techniques and results apply for both boundary control and
distributed control systems. We consider

inf
u∈L∞(Sd−1)
y solves (9.2)

1

2

∫

B1

|y − yd|2 dx+
1

2

∫

Sd−1

u2 dσ(x)

︸ ︷︷ ︸
:=J (u)

, (9.1)

where the underlying constraint is the following Poisson equation with bound-



70 Acta Numerica

ary control {
−∆y + f(y) = 0 in B1

y = u on Sd−1.
(9.2)

Here B1 = {|x| 6 1} denotes the unit ball in Rd denoting the spatial do-
main, Sd−1 := {|x| = 1} denotes the unit sphere (representing the domain’s
boundary), dσ represents the Lebesgue surface measure, and d 6 3. Balls
with arbitrary, positive radii, may also be considered.

The following non-uniqueness theorem can be shown to hold.

Theorem 9.1 ((Pighin 2020)). Suppose f ∈ C1(R)∩C2(R \ {0}), with
f ′ > 0, f(0) = 0 and

f ′′(y) 6= 0 for all y 6= 0.

Then there exists a target yd ∈ L∞(B1) such that the functional J defined
in (9.1) admits at least two global minimizers.

The proof relies on a rather clever idea, in which the author distinguishes
the cases of non-constant and constant controls. If the optimal control is not
constant, then by choosing a radial target yd and using the radial symmetry
of the domain, the minimizer can be rotated by an orthogonal matrix to
obtain a second, different minimizer. If the optimal control is a constant,
then one can select a special target, which is the sum of two characteristic
functions, of carefully constructed domains. For that target, the functional
will be shown to admit at least two local minimizers: one in (−∞, 0] and
another in [0,+∞). A careful bisection argument then yields a couple of
distinguished global minimizers in these sets.

Proof. We shall sketch the steps of the proof. Before proceeding, we define
the control-to-state map Φ(u) = y, where y solves (9.2) with control u. We
then define

I (u, yd) :=
1

2

∫

B1

|Φ(u)|2 dx+
1

2

∫

Sd−1

u2 dσ(x)−
∫

B1

Φ(u)yd dx.

It is readily seen that for any yd ∈ L∞(B1),

J (·) = I (·, yd) +
1

2
‖yd‖2L2(B1).

Hence, for a fixed target yd, minimizing I (·, yd) is equivalent to minimizing
J . Such a change of coordinates is rather convenient because I (0, yd) = 0
for any target yd.

1). Non-constant controls. First suppose that for some radial target
yd(x) = g(‖x‖), the optimal control u is not constant. Then, it can be shown
(see (Pighin 2020, Lemma A.5)) that there exists an orthogonal matrix
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M ∈ Rd×d(R) such that u ◦M 6= u. Now, one can show that

I (u ◦M, yd)

=
1

2

∫

B1

|Φ(u ◦M)|2 dx+
1

2

∫

Sd−1

|u ◦M|2 dσ(x)−
∫

B1

Φ(u ◦M)yd dx

=
1

2

∫

B1

|Φ(u)|2 dz +
1

2

∫

Sd−1

u2 dσ(z)−
∫

B1

Φ(u)yd dz

= I (u, yd),

by making use of the change of variable z = Mx. (This is nothing else
but exploiting an invariance with respect to rotations.) Then, u and u ◦M
are two different global minimizers for I (·, yd). This concludes the proof
whenever u is not a constant.

2). Constant controls. In view of the previous step, we may henceforth
focus on constant controls.

1. We first look to construct a special target yd ∈ L∞(B1) such that there
exist a couple of constant controls u− < 0 < u+ for which

I (u±, yd) < 0. (9.3)

To this end, let us first fix an arbitrary yd, and let u− < 0 < u+

be given. We try to characterize u± by means of a simpler sufficient
condition. By definition, we first observe that (9.3) holds if and only if

∫

B1

Φ(u−)yd dx >
dmeas(B1)

2
|u−|2 +

1

2

∫

B1

|Φ(u−)|2 dx, (9.4)

∫

B1

Φ(u+)yd dx >
dmeas(B1)

2
|u+|2 +

1

2

∫

B1

|Φ(u+)|2 dx, (9.5)

both hold; here meas(B1) designates the volume of the unit ball B1.
Now let us suppose that the target yd takes the specific form

yd := ς11ω1 + ς2 1ω2 ,

where (ς1, ς2) ∈ R2 are scalars to be found, and ω1, ω2 are two non-
empty subsets of B1 such that

ω1 ∪ ω2 ⊆ B1, ω1 ∩ ω2 = ∅, meas(ω1 ∪ ω2) = meas(B1). (9.6)

Now we see that a simple sufficient condition to ensure that the inequal-
ities (9.4)–(9.5) are satisfied is to ensure the following linear system of
algebraic equations is solvable for (ς1, ς2):





ς1

∫

ω1

Φ(u−) dx+ ς2

∫

ω2

Φ(u−) dx = c+,

ς1

∫

ω1

Φ(u+) dx+ ς2

∫

ω2

Φ(u+) dx = c−,

(9.7)
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where

c± :=
dmeas(B1)

2
|u±|2 +

1

2

∫

B1

|Φ(u±)|2 dx+ 1.

A cornerstone of the proof is precisely the invertibility of the matrix

A :=




∫

ω1

Φ(u−) dx

∫

ω2

Φ(u−) dx
∫

ω1

Φ(u+) dx

∫

ω2

Φ(u+) dx




appearing in (9.7).

2. This is ensured by (Pighin 2020, Lemma 3.4), which states precisely
what we assumed in the previous item; namely, that there exist a couple
of constant controls u− < 0 < u+ and a couple of subsets ω1, ω2 of B1

satisfying (9.6) such that the matrix A is invertible. This result is a
cornerstone of the proof, and we refer to the original reference for the
technical proof.
Since the matrix is invertible, c± are then clearly defined, and we can
solve the linear system (9.7) to find (ς1, ς2), for which the corresponding
target yd is such that (9.3) holds.

3. By (Pighin 2020, Lemma 3.2), since yd is now fixed, there exist u1 6 0
and u2 > 0, with u1 6= u2, such that

I (u1, yd) = inf
v∈(−∞,0]

I (v, yd), I (u2, yd) = inf
v∈[0,+∞)

I (v, yd).

(9.8)
Then, by (9.3), we also have that

I (u1, yd) 6 I (u−, yd) < 0 = I (0, yd),

as well as

I (u2, yd) 6 I (u+, yd) < 0 = I (0, yd).

Therefore, necessarily, u1 < 0 and u2 > 0, whence the constraints in
(9.8) are not saturated. In other words, and we see that I (·, yd) has at
least two local minimizers on R. Furthermore, when evaluated at these
local minimizers which have different signs, I (·, yd) is strictly negative.
We may conclude by means of a bisection argument ((Pighin 2020,
Lemma 3.3)), which states that there exists a target y?d ∈ L∞(B1) such
that

inf
v∈(−∞,0)

I (v, y?d) = inf
v∈(0,+∞)

I (v, y?d).

Since, as seen above, I (·, y?d) has a global minimizer in both (−∞, 0)
and (0,+∞) by (Pighin 2020, Lemma 3.2), we conclude that each of
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these minimizers, which are distinguished and have different signs, are
global on R. This concludes the proof.
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Figure 9.9: The proof above indicates that one need only look the functional J restricted
to constant controls on R. We display the functional J restricted on R, for the cubic
Poisson equation set on (0, 1), and a target yd := 410000 ·1(0, 1

4 )∪( 3
4
,1)−10300000 ·1( 1

4
, 3
4 ).

The numerics consist in a finite-difference discretization of the Laplacian, and a fixed-point
type algorithm with relaxation for the cubic nonlinearity. We clearly see the appearance of
two global minimizers, which are u1 ≈ −50 and u2 ≈ 4298; each defines a well designating
a basin of attraction. Determining which one is the turnpike is an open problem – a
possibility is the well at which the linearized optimality system’s Hamiltonian matrix has
the largest spectral abscissa. See Section 15 for a discussion.

The above non-uniqueness result has since been extended to more abstract
settings by means of techniques using convexity properties of Chebychev
sets ((Christof and Hafemeyer 2020)), and has also been explored for finite-
dimensional control systems in (Trélat 2020). We further discuss the latter
in Section 15.

10. Large, well-adapted targets

In a couple of recent works ((Esteve-Yagüe et al. 2020b), (Esteve-Yagüe et
al. 2020a)) motivated by applications in machine learning, a new tailored,
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nonlinear strategy has been conceived for dealing with large targets which
are steady states of the underlying equation. This strategy differs signifi-
cantly from those presented before, as it bypasses analyzing the linearized
optimality system, and thus allows for systems with (globally Lipschitz) non-
linearities which are non-smooth (e.g., the ReLU, x 7→ max{x, 0}, typically
encountered in machine learning applications – see Section 13).

We shall assume the setting of the semilinear wave equation, but the strat-
egy can readily be adapted to more general, semilinear, exactly controllable
systems (e.g. ODEs, or conservative systems). Actually, time-irreversible
equations (which are typically only controllable to steady states and trajec-
tories), such as the semilinear heat equation, may also be considered under
certain assumptions on the functional to be minimized – we postpone these
cases for a later discussion (see Section 10.3).

10.1. Setup

Let us consider

inf
u∈L2((0,T )×ω)

y:=(ζ,∂tζ)
ζ solves (10.2)

φ(y(T )) +

∫ T

0
‖y(t)− y‖2H1

0 (Ω)×L2(Ω) dt+

∫ T

0
‖u(t)‖2L2(ω) dt

︸ ︷︷ ︸
JT (u)

,

(10.1)
where 




∂2
t ζ −∆ζ + f(ζ) = u1ω in (0, T )× Ω,

ζ = 0 on (0, T )× ∂Ω,

(ζ, ∂tζ)|t=0
= (ζ0, ζ1) in Ω.

(10.2)

Note that in (10.1), y := (ζ, ∂tζ) – we are penalizing the energy norm of
the full state (ζ(t), ∂tζ(t)) of the wave system, unlike what we had done in
the linear setting (the L2 norm of either ∇xζ(t) or ∂tζ(t) was sufficient).
This particular consideration is an artifact of the strategy of proof – more
details may be found in Remark 10.7. Just as before, ω ⊂ Ω is open and
non-empty, satisfying additional geometrical assumptions specified later on.
Furthermore, we assume that

f ∈ Lip(R). (10.3)

In particular, no smoothness assumptions are made on f , in which case
the methodology based on linearizing the optimality system, presented in
preceding sections, is not applicable (one needs f ∈ C2(R)).

It will be rather more convenient to work with the wave equation as a first-
order system; we may of course rewrite (10.4) solely in terms of y := (ζ, ∂tζ)
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as {
∂ty = Ay + f(y) +Bu in (0, T ),

y|t=0
= y0,

(10.4)

where the operators A and B, and nonlinearity f, are defined as

A :=

[
0 Id
∆ 0

]
, D(A) :=

(
H2(Ω) ∩H1

0 (Ω)
)
×H1

0 (Ω), (10.5)

as well as

Bu :=

[
0
u1ω

]
, f(y) :=

[
0

−f(ζ)

]
. (10.6)

Clearly, the PDE constraint in (10.1) may also equivalently be changed to
(10.4). The first-order formulation (10.4) can then be used to generalize
the presentation to a broader class of systems by adequately adapting the
functional framework, as long as the core assumptions, presented in what
will follow, are maintained.

Let us henceforth denote

H := H1
0 (Ω)× L2(Ω).

We may recall that A generates a strongly continuous semigroup
{
etA
}
t>0

on H , which is also conservative, in the sense that
∥∥etA

∥∥
L (H )

= 1 (10.7)

for all t. Thus, by virtue of a Banach fixed point argument, given any
u ∈ L2((0, T ) × ω) and y0 ∈ H , (10.4) admits20 a unique finite-energy
solution y ∈ C0([0, T ]; H ).

We shall make a specific assumption on the target y ∈ H : we suppose
that it is an uncontrolled steady-state of (10.4), namely

Ay + f(y) = 0. (10.8)

We will, however, not make any smallness assumptions on y. Due to the
form of A and f in (10.5) and (10.6) respectively, selecting y as such amounts
to saying that y = (ζ, 0), with

{
−∆ζ + f(ζ) = 0 in Ω,

ζ = 0 on ∂Ω.

20 This well-posedness result applies to more general nonlinearities f and does not need
assuming (10.3) (see (Evans 1998, Section 12)). Rather, assuming (10.3) suffices for
bounding supt∈[0,T ] ‖y(t) − y‖H by means of the L2(0, T ; H ) norms of y − y and u,

plus the norm of y0−y, which we use repeatedly in the proof. Assumption (10.3) might
not be necessary and is of a technical nature – see Remark 10.8 for further details.
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Finally, the final cost φ : H → R is solely assumed continuous, convex, and
bounded from below (say by 0 for simplicity).

Clearly, as before, (10.1) admits a (not necessarily unique) solution by
the direct method in the calculus of variations. On another hand, due to
the specific choice of y in (10.8), we see that the optimal steady solution,
namely the unique pair (us, ys) solving

inf
(u,y)∈L2(ω)×H
Ay+f(y)+Bu=0

‖y − y‖2H + ‖u‖2L2(ω)︸ ︷︷ ︸
:=Js(u,y)

,

is precisely (us, ys) ≡ (0, y); indeed,

J (0, y) = 0 = inf
(u,y)∈L2(ω)×H
Ay+f(y)+Bu=0

Js(u, y) = min
(u,y)∈L2(ω)×H
Ay+f(y)+Bu=0

Js(u, y).

In other words, the steady optimal control problem admits a unique solution,
given by (0, y).

Finally, we shall assume that (10.4) is exactly controllable in some time
T0 > 0. More precisely, we make the following hypothesis.

Assumption 10.1 (Linear control cost). We suppose that

1). There exists a time T0 > 0 such that (10.4) is exactly-controllable
in time T0. Namely, for any data (y0, y1) ∈ H ×H , there exists a
control u ∈ L2((0, T0) × ω) such that the unique solution y to (10.4)
set on (0, T0) satisfies y(0) = y0 and y(T0) = y1.

2). There exists some r > 0 and some constant C(T0) > 0 such that

inf
u∈L2((0,T0)×ω)

y(0)=y0

y(T0)=y

‖u‖2L2((0,T0)×ω) 6 C(T0)
∥∥y0 − y

∥∥2

H
, (10.9)

and

inf
u∈L2((0,T0)×ω)

y(0)=y
y(T0)=y1

‖u‖2L2((0,T0)×ω) 6 C(T0)
∥∥y1 − y

∥∥2

H
, (10.10)

for every y0, y1 ∈ Br(y), where

Br(y) :=
{
z ∈H

∣∣∣ ‖z − y‖H 6 r
}
.

In the particular case of the semilinear wave equation, the above assump-
tion is satisfied21 when, in addition to (10.3), f(0) = 0 (this is generally

21 A subtile point regarding possible extensions to non-globally Lipschitz nonlinearities
is that the controllability time T0 may depend on the initial datum y0 (see (Joly and
Laurent 2014)). But in the big picture of turnpike this is not necessarily an issue, since
we are looking at T � 1.
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needed for ensuring (10.9) – (10.10)), and under specific geometric assump-
tions on ω ⊂ Ω, which needs to satisfy a slightly stronger condition than
just GCC, namely the so-called multiplier condition (see (Zuazua 1993),
(Zhang and Zuazua 2004), (Joly and Laurent 2014), and (Esteve-Yagüe et
al. 2020b, Remark 10), as well as the setting presented in the latter paper).
We state this as an explicit hypothesis in order to render transparent the
needed elements for generalizing the strategy to other systems22.

Remark 10.2 (Global exact controllability). We emphasize that, in
Assumption 10.1, we assume that exact controllability holds globally, namely,
without any smallness assumptions on the target y or the initial datum y0.
On the other hand, we suppose that the cost of controllability is bounded
as in (10.9) – (10.10) only for initial data y0 in a possibly small ball Br(y)
centered at y – while it might appear structurally restrictive, this is a lo-
cal assumption. As we shall see later on, the latter is not an impediment
to having a turnpike result which holds without any smallness assumptions
whatsoever23.

The following theorem then holds.

Theorem 10.3 ((Esteve-Yagüe et al. 2020b)). Let y0 ∈H , and let y
be as in (10.8). There exists T ∗ > 0, and constants C > 0 and λ > 0, such
that for all T > T ∗, any solution uT to (10.1), and the associated unique

22 In the finite-dimensional setting, due to the time-reversible nature, this assumption is
not restrictive and holds when 1). the associated linear system satisfies the Kalman
rank condition, and 2). a fixed-point argument can be performed to transfer the results
from the linear system to the nonlinear one. The latter typically requires that the
Lipschitz constant of f is small enough, so to transfer the controllability of the linear
system to the nonlinear one by a small perturbation argument through linearization or
a fixed point argument. In the infinite-dimensional setting, the assumption holds more
generally when we are working with skew-adjoint operators (A∗ = −A), generating
strongly-continuous and conservative groups of operators, for distributed control prob-
lems with appropriate geometric conditions on the control domain ω. The canonical
example satisfying this property is of course the wave equation, but there is also the
Euler-Bernoulli beam equation, among others. In this setting, globally Lipschitz non-
linear perturbations can be included without further smallness conditions, since they
constitute lower-order perturbations of the PDE. The multitude of examples is also one
of the reasons why we write the wave equation as a first-order system.

23 Albeit if exact controllability holds only for small initial data, then the turnpike result
will also inherit these restrictions and hold locally. This is the case for instance for
blowing-up wave equations of the form ∂2

t ζ−∂2
xζ+ζ3 = u1ω. Although small amplitude

initial data can be controlled to zero by a perturbation argument, the finite velocity
of propagation yields that large solutions might blow-up in the finite-time, and this
regardless of what the control u is, thus making the controllability of large initial data
impossible.
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solution yT to (10.4), are such that

‖uT ‖L2((0,T )×ω) 6 C

and

‖yT (t)− y‖H 6 C
(
e−λt + e−λ(T−t)

)

holds for all t ∈ [0, T ].

We note that, among other things, the result does not contain an exponen-
tial turnpike estimate for uT (t), or precise characterizations of the constants
C and λ – both are hallmarks of the linear theory, and we comment on
this in Remark 10.6 and Remark 10.4 respectively. All in all, a complete
discussion regarding the assumptions and possible extensions of Theorem
10.3 may also be found in Section 10.3.

10.2. Sketch of the proof of Theorem 10.3

Solely for simplicity of the subsequent sketch, let us suppose that estimates
(10.9) – (10.10) hold globally, namely that Br(y) = H . The entire strategy
can roughly be summarized as in Figure 10.10. Through a repetitive use
of the quasi-turnpike principle, and an interpolation inequality tied to the
Lipschitz character of the underlying system, we may inductively decrease
the radius of the tubular neighborhood where yT (t) is localized by looking
over shrinking time intervals. We corroborate with more detail.

• The first tool in our arsenal will be the following inequality for solu-
tions to (10.4): there exists a constant C1 > 0, which is (crucially)
independent of T , such that

sup
t∈[0,T ]

‖y(t)−y‖H 6 C1

(
‖y(0)−y‖H +‖y−y‖L2(0,T ;H )+‖u‖L2((0,T )×ω)

)

(10.11)
holds for any, not necessarily optimal u, and corresponding solution
y(t) to (10.4). The assumption f ∈ Lip(R) set in (10.3) is used pre-
cisely here, as it suffices for proving (10.11). We refer the reader to
Lemma 10.11.

• Regarding problem (10.1): we first show (Lemma 10.12) that there
exists C2 > 0, also independent of T , such that

JT (uT ) 6 C2 (10.12)

holds for all T > T0, where T0 > 0 is the controllability time. As the
target y is a steady state as in (10.8), estimate (10.12) can be shown
easily, and done by using the quasi-turnpike principle presented in the
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Figure 10.10: Our strategy for showing turnpike for ‖yT (t) − y‖H (blue curve) is as
follows. We first show that ‖yT (t) − y‖H is bounded by some possibly large constant
C > 0 independent of T > 0, over the entire interval [0, T ], for T > 0 large enough. Then,
for some sufficiently large τ > 0 independent of T , in a ”symmetrical staircase” fashion, we
zoom in over successively smaller subintervals [nτ, T −nτ ] by induction over all n > 1 such
that T − 2nτ > 2T0 (an upper bound on n, which guarantees that controllability may be
used in two disjoint subintervals of [nτ, T−nτ ] to construct a quasi-turnpike). And in each
such subinterval, we exponentially decrease an upper bound of the form γ := 4C2

•/
√
τ < 1,

independent of T . Here C• > 0 is some constant slightly larger than C. In other words,
we inductively decrease the radius of the tubular neighborhood where yT (t) is localized,
by shrinking the time intervals where t lies.

introduction. When used in conjunction with (10.11), estimate (10.12)
yields

sup
t∈[0,T ]

‖y(t)− y‖2H + JT (uT ) 6 C2
3 (10.13)

for some constant C3 > 0, depending on C1, C2 (precisely the constants
from (10.11) and (10.12) respectively) and

∥∥y0 − y
∥∥

H
, but independent

of T > T0.

• Estimate (10.13) is a cornerstone of the subsequent arguments, con-
taining a couple of crucial clues. First among these two clues is that
the exponential turnpike can immediately be derived on intervals whose
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length is independent of T . Indeed, for t ∈ [0, τ +T0] for instance, from
(10.13) one gathers that

‖yT (t)− y‖H 6 C3e
λt e−λt 6 C3e

λ(τ+T0)
(
e−λt + e−λ(T−t)

)
(10.14)

holds for any λ > 0 (the specific λ appearing in Theorem 10.3 will then
be fully determined at the end of the proof). A similar computation
can then be repeated for t ∈ [T − (τ + T0), T ]. Herein, one already
notes that T needs to be chosen sufficiently large, namely,

T > 2(τ + T0), (10.15)

where τ > 0 is a free parameter, chosen large enough later on (with
the slight caveat of increasing the constant C3e

λ(τ+T0) in (10.14)).

• And so, turnpike only needs to be shown for t ∈ [τ + T0, T − (τ + T0)].
To this end, we invoke the second clue that (10.13) provides: there
must exist τ1 ∈ [0, τ) and τ2 ∈ (T − τ, T ] such that

‖yT (τj)− y‖H 6
‖yT − y‖L2(0,T ;H )√

τ

(10.13)

6 C3√
τ
. (10.16)

(If not, one readily derives a contradiction.) Here, C3 > 0 is the con-
stant appearing in (10.11). As τ will be chosen at least larger than
C2

3 just below, this estimate motivates localizing the entire problem in
[τ1, τ2] in view of sharpening the pointwise estimate of (10.13). And so,
restricting uT to the subinterval [τ1, τ2], one sees that it is a solution to

inf
u∈L2((τ1,τ2)×ω)

∂ty=Ay+f(y)+Bu in (τ1,τ2)
y(τ1)=yT (τ1)
y(τ2)=yT (τ2)

∫ τ2

τ1

‖y(t)− y‖2H dt+

∫ τ2

τ1

‖u(t)‖2L2(ω) dt.

(10.17)
(This can be seen as some kind of dynamic programming principle, and
is readily shown by arguing by contradiction.) We then show that there
exists some constant24 C• > C3, independent of T, τ1, τ2 and τ , such
that

‖yT (t)− y‖H 6 C•

(
‖yT (τ1)− y‖H + ‖yT (τ2)− y‖H

)
(10.18)

holds for all t ∈ [τ1, τ2]. In view of (10.11), such an estimate would fol-
low should we bound the functional minimized in (10.17) by means of

24 Estimate (10.18) actually holds with some constant C4 > 0 independent of T, τ1, τ2 and
τ (the proof follows the lines of that of (10.13), employing the quasi-turnpike principle),
and, in principle, there is no reason to guarantee that C4 > C3 initially. But we may
simply take C• := max{C3, C4} so that C• > C3, and we do so, so that subsequent
bounds are simpler to write.
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the right-hand-side in (10.18). The latter can indeed be shown by argu-
ing through the quasi-turnpike principle (see Figure 10.11). Estimate
(10.18) combined with (10.16) yields

‖yT (t)− y‖H 6 2C3 · C•√
τ

6 1

2
· 4C2

•√
τ

(10.19)

for all t ∈ [τ1, τ2], and thus also for all t ∈ [τ, T − τ ]. We henceforth fix

τ > 16C4
• ;

estimate (10.19) thus yields a contraction. The entire argument which
precedes can then be repeated by induction on even smaller sub-intervals
[nτ, T − nτ ] for all integers n > 1 which satisfy T − 2nτ > 2T0 (this is
an upper bound on n, in order to be able to repeat the quasi-turnpike
argument of Figure 10.11) to obtain

sup
t∈[nτ,T−nτ ]

‖yT (t)− y‖H 6 1

2

(
4C2
•√
τ

)n
. (10.20)

We may rewrite (10.20) as

sup
t∈[nτ,T−nτ ]

‖yT (t)− y‖H 6 1

2

(
4C2
•√
τ

)n

=
1

2
exp

(
−n log

( √
τ

4C2
•

))
, (10.21)

and since τ > 16C4
• , the double-arc exponential estimate will readily

follow by a judicious choice of n, with n > 1 and T − 2nτ > 2T0. (See
(10.30) for the exact choice of n, as well as Remark 10.4 for the form
of the constants C and λ, which arise directly from (10.30) applied to
(10.21).)

Note that at no point in the above steps did we make use of the optimality
system, nor explicitly linearize the system. This in turn allowed us to avoid
assuming C2-nonlinearities, and smallness assumptions on the initial data
y0 or the target y, which are needed if one proceeds by linearization of the
optimality system as in (Trélat and Zuazua 2015), (Porretta and Zuazua
2016).

10.3. Discussion

Remark 10.4 (The constants C and λ). From the proof (presented be-
low) and also (10.20), one can gather that the constants C > 0 and λ > 0
appearing in the exponential estimate of Theorem 10.3 are explicit (albeit
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∥∥∥yT (τ1)− y
∥∥∥
2

H

C(T0)
∥∥∥yT (τ2)− y

∥∥∥
2

H
>
∫
‖ . . . ‖2U dt

τ1 τ2

yT (τ1)

yT (τ2)

y

τ1 + T0 τ2 − T0

Figure 10.11: (Left) We construct a quasi-turnpike control uaux(t) = u11[τ1,τ1+T0](t) +
u21[τ2−T0,τ2](t) for t ∈ [0, T ], where u1 controls the state from yT (τ1) to y in time τ1 +T0,
while u2 controls from y (starting in time t = τ2 − T0) to yT (τ2) in time t = τ2 (right).
Using (10.16) and Assumption 10.1, we may ensure that ‖uj‖L2 6 C(T0)‖yT (τj)− y‖H ,
which combined with the Grönwall inequality for estimating the tracking terms, and the
suboptimality of uaux, yields (10.18).

rather compound). We recall that, being given r > 0 (defined in Assumption
10.1) and T0 > 0, one selects τ large enough (at least strictly larger than
16C4

• , where C• = C•(r, T0) > 0 is the constant appearing in (10.20)), and
subsequently, takes T > 2(T0 + τ) := T ∗. Then,

• The decay rate λ > 0 is given by

λ :=
log
( √

τ
4C2
•

)

τ + T0
=

log
(

τ
16C4
•

)

T ∗
.

In particular, λ also depends on the radius r > 0 defined in Assumption
10.1 through C• (in an increasing and exponential manner, due to un-
derlying Grönwall inequalities). As a matter of fact, should Br(y) = H
(namely, the estimates (10.9) – (10.10) on the control cost hold for any
initial datum), then we can select r :=

∥∥y0 − y
∥∥

H
in the proof, which

already insinuates a dependence of the decay rate on the initial datum,
quite unlike what was encountered in the linear case ẏ = Ay + Bu,
where λ solely depends on A and B.

• On the other hand, from (10.14) and (10.21) (along with the discussion
regarding (10.21)), we gather that the constant C > 0 takes the form

C := max

{
C3e

λ(τ+T0),

√
τ

4C2
•

}
,

with C3 > 0 stemming from (10.13). Furthermore, we may also deduce
that, roughly,

C2
3 = φ(y) + C(T0, f, ω)

∥∥y0 − y
∥∥2

H
.
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Thus, the linear dependence with respect to
(∥∥y0 − y

∥∥
H
, ‖p‖H

)
of

the LQ case is not quite maintained through the strategy presented in
this section.

Remark 10.5 (Time-irreversible equations). • When φ ≡ 0 in (10.1),
or φ(y) = 0 (recall that φ > 0), one can repeat the proof above by it-
erating solely forward in time (namely, consider intervals of the form
[nτ, T ] in the induction argument) and show an estimate of the form

‖yT (t)− y‖H 6 Ce−λt. (10.22)

Here, we do not see the final arc near t = T since the turnpike y is a
zero of the final cost φ, i.e. y ∈ {φ = 0}. In some sense, with (10.22)
we are recovering a nonlinear extension of well-known linear Riccati
theory without making use of the optimality system. The result is
however not trivial (in the sense that it is not a direct consequence of
the controllability), since the underlying dynamics are nonlinear, and
the stabilizing control is found by minimizing a (tractable) functional.
Furthermore, in this case, assuming (10.10) is not necessary, as solely
(10.9) suffices. Similarly, solely controllability to the steady state y
suffices. This result is also provided and detailed in (Esteve-Yagüe et
al. 2020b).

• When (10.10) is not needed (suppose, for simplicity, that φ ≡ 0 in
view of the above discussion), we see that at no point does one need
to assume that the semigroup is conservative (i.e. (10.7)). Thus, for
problems of the form

inf
u∈L2((0,T )×ω)
y solves (10.4)

∫ T

0
‖y(t)− y‖2H dt+

∫ T

0
‖u(t)‖2L2(ω) dt,

where H = L2(Ω), with A = ∆, Bu = u1ω and f = f in (10.4),
assuming only (10.9) (and not (10.10), (10.7)), one can ensure that
‖yT (t)− y‖H 6 Ce−λt by slightly adapting the proof presented above.
This ensures the validity of the strategy also for the semilinear heat
equation with a globally Lipschitz nonlinearity.

• Having φ(y) 6= 0 and assuming (10.10) is precisely an obstacle for
applying the strategy to time-irreversible systems such as the (semi-
linear) heat equation. Reading the proof, one sees that the target
y1 will manifest itself roughly as a trajectory snapshot of the form
yT (T − nτ) (e.g., in (10.17)), so exact controllability to this reference
point would also hold for the semilinear heat equation. The issue is
rather ensuring the estimate (10.10), which is used in the process of
obtaining (10.18). Indeed, yT (T − nτ) := ŷ(T•) is an instance of a
trajectory ŷ, which comes along with its own control û, one would have
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‖u−û‖L2((0,T•)×ω) 6 C(T•)‖y−ŷ(T•)‖H for a minimal L2-norm control
(see (Pighin and Zuazua 2018, Lemma 8.3) and the references therein).
Such an estimate will not suffice, since then one cannot provide a bound
of the minimal L2-norm control u solely in terms of ‖y − ŷ(T•)‖H .

Remark 10.6 (Exponential estimate for uT ). Due to the fact that the
proof does not make use of the optimality system and linearization (to avoid
smoothness assumptions on f , and smallness assumptions on y0 and in par-
ticular on y), uT is not characterized through the adjoint state pT , and thus
only an integral turnpike property/estimate rather than an exponential one
for uT is guaranteed. There is however a case, presented in (Esteve-Yagüe
et al. 2020b), in which exponential turnpike can be ensured. If φ ≡ 0, as
discussed in the above remark, one can ensure that

‖yT (t)− y‖H 6 Ce−λt.

But if moreover H = Rd and the underlying ODE is of driftless control-
affine form:

ẏ(t) =

m∑

j=1

uj(t)fj(y(t)),

with fj ∈ Lip(Rd;Rd), then

‖uT (t)‖ 6 Ce−λt

for t ∈ [0, T ] also holds. The proof of this fact makes crucial use of the
homogeneity properties that driftless systems enjoy, which allows one to
construct suboptimal controls by simple scalings and show an estimate of
the form ∫ t+h

t
‖uT (t)‖2 dt 6 2

∫ t+h

t
‖yT (t)− y‖2 dt

for h� 1 and t ∈ [0, T ). The Lebesgue differentiation theorem would then
yield the desired conclusion.

Remark 10.7 (State penalty). Note that in (10.1) we are penalizing
the energy norm of the full state (which, in the case of the wave equation, is
y(t) := (ζ(t), ∂tζ(t))). We do this due to the fact that the energy norm of the
full state appears on the right-hand side in the interpolation estimate (10.11)
(see also Lemma 10.11). Indeed, since the strategy consists in showing
that the functional JT evaluated at an optimal pair is bounded (through
the quasi-turnpike principle), and then using this information to ensure a
pointwise bound of the state y(t) through (10.11), we need to ensure that
the functional JT contains all of the terms appearing in the right-hand side
of the estimate in (10.11).

For the semilinear wave equation, it is plausible that this restriction can be
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relaxed, in the sense that one penalizes solely the kinetic or potential energy
of the waves (as in the LQ case), by taking advantage of the equipartition
of energy principle. This adaptation, however, does not appear trivial, we
leave it open for future work.

Remark 10.8 (On the nonlinearity f). The globally Lipschitz charac-
ter of f is used precisely in (10.11) (namely Lemma 10.11). This may be
solely a technical assumption, which is, however, not necessarily trivial to
overcome at a first glance. One could stipulate that the strategy should
also apply to equations with superlinear nonlinearities (which preserve the
controllability mechanism of the linear dynamics), contrary to solely glob-
ally Lipschitz ones. In essence, the adaptation boils down to obtaining an
estimate akin to (10.11) for such systems.

• To illustrate the issues which may arise, let us first provide a simple
proof of (10.11) in the finite-dimensional case:

ẏ(t) = Ay(t) + f(y(t)) + u(t) in (0, T ),

where A ∈ Rd×d, and f ∈ Lip(Rd;Rd). Suppose that y ∈ Rd is some
non-trivial steady state, with null control. We see that ζ(t) := y(t)− y
solves

ζ̇(t) = Aζ(t) + g(ζ(t)) + u(t) in (0, T ), (10.23)

where g is again globally Lipschitz. Clearly

|ζ(t)|2 − |ζ(0)|2 = 2

∫ t

0
ζ(s) · ζ̇(s) ds (10.24)

for t ∈ [0, T ]. But then, by the Cauchy-Schwarz and Young inequalities,
∫ t

0
ζ(s) · ζ̇(s) ds 6

∫ t

0
|ζ(s)|2 ds+

1

4

∫ t

0
|ζ̇(s)|2 ds. (10.25)

Finally, directly using (10.23) and the Lipschitz character of g, one
finds

|ζ̇(s)| 6 C(A, g)|ζ(s)|+ |u(s)|. (10.26)

Putting (10.24), (10.25) and (10.26) together, one derives (10.11).

• A canonical superlinear nonlinearity for which, oftentimes, controlla-
bility is preserved from the linear dynamics (in both finite and infinite
dimensions) is the cubic nonlinearity. Let us thus consider

ẏ = Ay − |y|2y + u in (0, T ).

Suppose y ∈ Rd is a non-trivial steady state, with zero control. We
look to repeat the same arguments as in what precedes. Starting from



86 Acta Numerica

(10.24), we see that
∫ t

0
(y(s)− y)ẏ(s) ds =

∫ t

0
(y(s)− y) ·

(
Ay(s)− |y(s)|2y(s) + u(s)

)
ds.

If one applies the Cauchy-Schwarz and Young inequalities as in (10.25),
and uses the fact that Ay − |y|2y = 0, then inevitably the term

∫ t

0

∣∣∣
∣∣y(s)

∣∣2y(s)−
∣∣y
∣∣2y
∣∣∣
2

ds (10.27)

appears. Recall that in (10.11), the norms appearing in the upper
bound are precisely those minimized in the cost functional (in occur-
rence, ‖y − y‖2

L2(0,T ;Rd)
+ ‖u‖2

L2(0,T ;Rd)
). Hence, to derive (10.11), we

would like to roughly absorb (10.27) by the quantity we minimize in
the cost functional. But the validity of such a claim is far from obvi-
ous to our understanding. If the derivative ẏ(t) is also tracked in the
functional, the elementary Sobolev embedding H1(0, T ) ↪→ C0([0, T ])
could perhaps be of use. But this too remains to be analyzed with
more rigor, as the constant which appears from applying the Sobolev
inequality would depend on T (albeit explicitly). Similar issues persist
in the PDE case (for both heat and wave equations).

At any rate, should one be able to prove that an estimate such as (10.11)
holds for, say, locally Lipschitz-only nonlinearities for which blow-up is
avoided, then the strategy should also be applicable to such settings.

Remark 10.9 (Linear cost assumption). • While we suppose that
the underlying system (10.4) is controllable for arbitrarily large data,
through (10.9) – (10.10) we only assume that the cost of control is
proportionate to the distance from the chosen steady state y in some,
possibly arbitrarily small ball around this steady state. This assump-
tion is oftentimes satisfied by semilinear systems which are shown to
be controllable by looking at an associated linear problem combined
with a fixed point theorem of some form (with possibly under various
smallness assumptions on the Lipschitz constant for finite dimensional
systems, see, e.g., (Carmichael and Quinn 1985), (Seidman 1987), and
(Zhang 2000) for further references). Such conclusions hold, for in-
stance, for the semilinear wave equation (with f(0) = 0).
• We cannot ensure the validity of estimates (10.9) – (10.10) for driftless

systems:

ẏ(t) =

m∑

j=1

uj(t)fj(y(t)),

when m < d. This is due to the so-called ball-box theorem in sub-
Riemannian geometry ((Agrachev, Barilari and Boscain 2019)), for
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smooth vector fields f1, . . . , fm. This theorem states the following.
Suppose that the vector fields f1, . . . , fm satisfy the Hörmander condi-
tion, namely that the iterated Lie brackets of these vector fields at any
point span Rd. Let us henceforth denote

41(x) := span{f1(x), . . . , fm(x)}
for x ∈ Rd, and then iterate as

4k+1 := 41 + [4k,41]

for k > 1. Then, by virtue of the Hörmander condition, there exists
some κ > 1 such that 4κ(x) = Rd for all x. Furthermore, by the
ball-box theorem, for y0 close enough to y1, an estimate of the form

‖y0 − y1‖ . dSR(y0, y1) . ‖y0 − y1‖1/κ

holds, where dSR(y0, y1) is the sub-Riemannian distance of y0 to y1,
equal (modulo a scalar multiple depending on T0) to the infimum de-
fined in (10.9) – (10.10). Herein, one sees that if m > d, it may happen
to find at least d among m vector fields which are linearly independent,
thus ensuring that κ = 1, as desired; this is quite simply impossible
when m < d. This exact constraint is also encountered in (Esteve-
Yagüe et al. 2020a, Theorem 5.1), where the estimates (10.9) – (10.10)
are shown to hold for m > d in the driftless setting. A clearer picture
regarding this issue is also needed for general control-affine systems
beyond those for which linearization techniques might not apply. We
refer to (Jean and Prandi 2015), (Prandi 2014) for developments in this
direction.

Remark 10.10 (Controlled steady states). One can also consider more
general controlled steady states y as targets in JT ; focusing on the semi-
linear wave equation, we could take y such that

Ay + f(y) +Bu = 0

for a given u ∈ L2(ω), provided the functional JT is modified accordingly,
namely rather consider

JT (u) := φ(y(T )) +

∫ T

0
‖y(t)− y‖2H dt+

∫ T

0
‖u(t)− u‖2L2(ω) dt.

The cornerstone of the above strategy lies in using the controllability as-
sumption to construct sub-optimal controls which annul the running cost
beyond time T0 > 0. In the presence of a target for the control, given a
controllability control u1 steering y1 to y in time T0, one could simply con-
struct a quasi-turnpike control by setting uaux(t) = u11[0,T0] + u1[T0,T ] for
t ∈ [0, T ], and the strategy would remain the same.
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10.4. Proof of Theorem 10.3

We proceed with (most details of) the proof. We focus on providing a trans-
parent presentation, and for the full technical details, we refer the reader
to (Esteve-Yagüe et al. 2020b). The proof requires a couple of preliminary
lemmas. We begin with

Lemma 10.11 (Poincaré-Sobolev-type inequality). Let y0 ∈H , and
let y be as in (10.8). There exists a constant C > 0 (depending on y0, y, f)
such that for any T > 0 and u ∈ L2((0, T ) × ω), the unique solution y to
(10.4) is such that

‖y(t)− y‖H 6 C
(∥∥y0 − y

∥∥
H

+ ‖y − y‖L2(0,T ;H ) + ‖u‖L2((0,T )×ω)

)

holds for all t ∈ [0, T ].

The proof of the Lemma in the infinite-dimensional setting is slightly more
complicated than the elementary argument presented in Remark 10.8, due
to the presence of an unbounded operator A, so we provide some more detail.

Proof. We readily see that ψ(t) := y(t)− y is the unique solution to
{
∂tψ −Aψ + f(ψ + y)− f(y) = Bu in (0, T ),

ψ|t=0
= y0 − y,

and has the Duhamel formula characterization

y(t)− y = etA
(
y0 − y

)
+

∫ t

0
e(t−s)ABu(s) ds−

∫ t

0
e(t−s)A

(
f(y(s))− f(y)

)
ds.

Let us first suppose that t 6 1. As
∥∥etA

∥∥
L (H )

= 1, using solely the Lipschitz

character of f (through that of f) and the fact that B is bounded, we find

‖y(t)− y‖H 6
∥∥y0 − y

∥∥
H

+ C(B, f)

(∫ t

0
‖u(s)‖L2(ω) ds+

∫ t

0
‖y(s)− y‖H ds

)
.

Using Grönwall’s lemma, and the Cauchy-Schwarz inequality (as t 6 1)
yield the conclusion. Now suppose that t ∈ (1, T ]. We claim that there
exists t∗ ∈ (t− 1, t] such that

‖y(t∗)− y‖H 6 ‖y − y‖L2(0,T ;H ). (10.28)

This can indeed readily be shown by arguing by contradiction. By writing
the Duhamel formula for y(t)− y in [t∗, t], namely

y(t)− y = etA
(
y0 − y

)
+

∫ t

t∗
e(t−s)ABu(s) ds−

∫ t

t∗
e(t−s)A

(
f(y(s))− f(y)

)
ds,
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we see that, just as before,

‖y(t)− y‖H 6 ‖y(t∗)− y‖H

+ C(B, f)

(∫ t

t∗
‖u(s)‖L2(ω) ds+

∫ t

t∗
‖y(s)− y‖H ds

)
.

Now, using Grönwall’s lemma, the Cauchy-Schwarz inequality (as t−t∗ 6 1),
and (10.28), we may conclude the proof.

Lemma 10.12 (Uniform bounds). Suppose y0 ∈ H . Let T > T0,
where T0 denotes the (minimal) controllability time for (10.4), and let uT
be any global minimizer to JT , with yT denoting the associated state,
unique solution to (10.4). Then there exists a constant C > 0, independent
of T , such that

JT (uT ) + ‖yT (t)− y‖2H 6 C.

holds for all t ∈ [0, T ].

Proof. By controllability, there exists some control u1 (independent of T )
such that the solution y1 to (10.4) on [0, T0] satisfies y1(T0) = y. We now
set

uaux(t) := u1(t)1[0,T0](t) for t ∈ [0, T ],

and let yaux be the associated solution to (10.4). Clearly,

yaux(t) ≡ y for t ∈ [T0, T ].

Since uT is a minimizer of JT , we find

JT (uT ) 6 JT (uaux) = φ(y) +

∫ T0

0

∥∥y1(t)− y
∥∥2

H
dt+

∫ T0

0

∥∥u1(t)
∥∥2

L2(ω)
dt.

As the right-hand-side is a constant independent of T , the result follows by
applying Lemma 10.11.

We may now provide the proof of Theorem 10.3.

Proof. The uniform bound on optimal controls uT follows by Lemma 10.12.
We thus focus on proving the exponential turnpike estimate for the optimal
state yT . Let T0 > 0 be the (minimal) controllability time of (10.4). Let
C1 > 0 denote the constant appearing in Lemma 10.12. Let

τ > 0

be a fixed degree of freedom and to be chosen later, and suppose

T > 2(τ + T0).

We shall distinguish two cases.

Case 1. Should t ∈ [0, τ+T0]∪ [T −(τ+T0), T ]. In this case, the length of
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each time interval where t lies is independent of T , and so the exponential
turnpike estimate follows simply by Lemma 10.12. Indeed, by Lemma 10.12,
for any λ > 0, we have

‖yT (t)− y‖H 6 C1e
λt e−λt 6 C1e

λ(τ+T0)
(
e−λt + e−λ(T−t)

)

for t ∈ [0, τ + T0], and similarly

‖yT (t)− y‖H 6 C1e
λ(T−t) e−λ(T−t)

6 C1e
λ(τ+T0)

(
e−λt + e−λ(T−t)

)

for t ∈ [T − (τ + T0), T ]. This yields the desired conclusion in the union of
these time intervals; since λ > 0 is arbitrary in both of the above estimates,
the final rate λ > 0 appearing in the statement of the theorem will be derived
from the second case.

Case 2. Should t ∈ (τ + T0, T − (τ + T0)). This is more delicate. The
main clue will be to actually prove an estimate of the form

sup
t∈[nτ,T−nτ ]

‖yT (t)− y‖H 6
(

4C•√
τ

)n
(10.29)

for some constant C• > 0 independent of T and τ , and for any integer n
such that

1 6 n 6 1

τ

(
T

2
− T0

)
.

Indeed, suppose that estimate (10.29) holds. Then for any fixed but other-
wise arbitrary t ∈ (τ + T0, T − (τ + T0)), one sets

n(t) := min

{⌊
t

τ + T0

⌋
,

⌊
T − t
τ + T0

⌋}
. (10.30)

Clearly n(t) > 1, as well as

n(t) 6 1

τ

(
T

2
− T0

)

(the latter is more tricky, and needs noting that s 7→ s−2T0
s is nondecreasing),

and finally,

n(t)τ 6 t 6 T − n(t)τ.
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Thus, for such fixed t, if we select τ > 16C4
• in (10.29), we find

‖yT (t)− y‖H 6 exp

(
−n(t) log

( √
τ

4C2
•

))

6
√
τ

4C2
•


exp


−

log
( √

τ
4C2
•

)

τ + T0
t


+ exp


−

log
( √

τ
4C2
•

)

τ + T0
(T − t)




 ,

where in the last estimate we have used the fact that either n(t) > t
τ+T0

− 1

or n(t) > T−t
τ+T0

− 1 must hold by definition of n(t). This is the desired
exponential turnpike estimate, with decay rate

λ :=
log
( √

τ
4C•

)

τ + T0
> 0,

and taking Case 1 into account, the constant C > 0 appearing in the state-
ment of the theorem takes the form

C := max

{
C1e

λ(τ+T0),

√
τ

4C2
•

}
.

Thus, our task reduces to proving an estimate of the form (10.29). We shall
proceed by induction.

1. Since T > 2(τ +T0) and thus τ 6 T/2, we can readily show25 that there
exist a couple of time instances τ1 ∈ [0, τ) and τ2 ∈ (T −τ, T ] such that

‖yT (τj)− y‖H 6
‖yT − y‖L2(0,T ;H )√

τ

for j ∈ {1, 2}. This estimate, combined with Lemma 10.12, then yields

‖yT (τi)− y‖H 6 C1√
τ
. (10.31)

Here, the constant C1 > 0 stems from Lemma 10.12, and is independent
of both T and τ . We shall now restrict our analysis onto [τ1, τ2] and
extrapolate onto the strict subset [τ, T − τ ]. It can be seen26 that

25 This estimate is true for any ψ ∈ C0([0, T ]; H ), and can be shown by an indirect
argument: if

‖ψ(t)‖H >
‖ψ‖L2(0,T ;H )√

τ

for all t ∈ [0, τ) or all t ∈ (T − τ, T ], the integrating over [0, T ] one readily finds a
condradiction.

26 Can be shown by arguing by contradiction.
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uT|[τ1,τ2]
is a solution to

inf
u∈L2((τ1,τ2)×ω)

∂ty=Ay+f(y)+Bu in (τ1,τ2)
y(τ1)=yT (τ1)
y(τ2)=yT (τ2)

∫ τ2

τ1

‖y(t)−y‖2H +

∫ τ2

τ1

‖u(t)‖2L2(ω) dt. (10.32)

For this optimal control problem, arguing as in Lemma 10.12, whilst
using the fact τ2− τ1 > 2T0, as well as Assumption 10.1 in conjunction
with (10.31) for

τ > C2
1

r2
(10.33)

(namely τ such that C1/
√
τ 6 r in (10.31)), one can show that there

exists a constant C2 > 0, depending on r and C1, but otherwise inde-
pendent of T, τ, τ1 and τ2, such that

‖yT (t)− y‖H 6 C2

(
‖yT (τ1)− y‖H + ‖yT (τ2)− y‖H

)
(10.34)

holds for all t ∈ [τ1, τ2]. The proof of (10.34) (precisely illustrated in
Figure 10.11, see also (Esteve-Yagüe et al. 2020b, Lemma 5.2)) relies
on constructing a quasi-turnpike control (which is suboptimal for the
functional in (10.32)) steering yT (t) to y in time τ1 + T0 by controlla-
bility, then staying at the steady state y until time τ2 − T0 by using
no control whatsoever, and finally exiting y to reach yT (τ2) in time τ2,
again by controllability. (See Figure 10.11.) This quasi-turnpike con-
trol will be bounded precisely by the right-hand-side in (10.34) through
the linear cost assumption estimates (10.9) – (10.10), and the same can
then be said for the state tracking terms by using a Grönwall inequality
argument. Setting

C• := max{C1, C2} > 0,

we find

‖yT (t)− y‖H 6 1

2

(
4C2
•√
τ

)

for all t ∈ [τ1, τ2], and thus also for all t ∈ [τ, T − τ ]. This proves the
desired estimate (10.29) for n = 1.

2. We now bootstrap the above argument. We shall show that for any
integer n satisfying

1 6 n 6 1

τ

(
T

2
− T0

)
,
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one has

sup
t∈[nτ,T−nτ ]

‖yT (t)− y‖H 6 1

2

(
4C2
•√
τ

)n
. (10.35)

The parameter n is chosen as such to ensure T − 2nτ > 2T0, in view of
repeating the argument of the case n = 1 (which requires constructing a
quasi-turnpike control by using controllability in two disjoint intervals
of length T0, hence the factor 2T0). By induction, we suppose that
(10.35) holds for some n, and we aim to show heredity at stage n+ 1.
To this end, suppose that

n+ 1 6 1

τ

(
T

2
− T0

)
.

Then we clearly have

τ 6 T − 2nτ

2
.

And since T − 2nτ > 2T0, it can be seen that uT |[nτ,T−nτ ] is a solution
to

inf
u∈L2((nτ,T−nτ)×ω)

∂ty=Ay+f(y)+Bu in (nτ,T−nτ)
y(nτ)=yT (nτ)

y(T−nτ)=yT (T−nτ)

∫ T−nτ

nτ
‖y(t)−y‖2H +

∫ T−nτ

nτ
‖u(t)‖2L2(ω) dt.

Arguing as before, we may again find time instances t1 ∈ [nτ, (n+ 1)τ)
and t2 ∈ (T − (n+ 1)τ, T − nτ ] such that

‖yT (ti)− y‖H 6
‖yT − y‖L2(nτ,T−nτ ;H )√

τ

6 C2√
τ

(
‖yT (nτ)− y‖H + ‖yT (T − nτ)− y‖H

)
.

Here, C2 > 0 is precisely the same constant as in (10.34). We may use
the induction hypothesis (10.35) to deduce that

‖yT (ti)− y‖H 6 C2√
τ

(
4C2
•√
τ

)n
(10.36)

We need to recover a power of C2 in the estimate to conclude, so we
repeat the same argument on [t1, t2]. Since t2 − t1 > 2T0, and since
uT |[t1,t2] is a solution to

inf
u∈L2((t1,t2)×ω)

∂ty=Ay+f(y)+Bu in (t1,t2)
y(t1)=yT (t1)
y(t2)=yT (t2)

∫ t2

t1

‖y(t)− y‖2H +

∫ t2

t1

‖u(t)‖2L2(ω) dt.
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using (10.36) and C• > C2, we may deduce that

‖yT (t)− y‖H 6 C2

(
‖yT (t1)− y‖H + ‖y(t2)− y‖H

)

6 1

2

4C2
•√
τ

(
4C2
•√
τ

)n

for t ∈ [t1, t2]. This estimate also holds for t ∈ [(n+1)τ, T−(n+1)τ ], as
desired, thus concluding the proof of (10.35) (namely (10.29)) should
τ > C2

1/r2.

In view of (10.33), and to then ensure that
√
τ/4C2

• < 1 in (10.29), we need
to select

τ > 16C4
• +

C2
1

r2
.

This concludes the proof.

PART THREE

Applications

11. Initializing optimization algorithms

11.1. Background

One of the first practical applications of the concrete mathematical develop-
ments in turnpike theory was given in (Trélat and Zuazua 2015). In addition
to proving a local turnpike property for nonlinear optimal control problems,
the authors also provide an efficient way for initializing numerical methods
for optimal control.

There exist, in essence, two kinds of approaches for the numerical res-
olution of continuous-time optimal control problems: direct and indirect
methods ((Von Stryk and Bulirsch 1992), (Benzi, Golub and Liesen 2005),
(Betts 2010), (Trélat 2005), (Trélat 2012)). Direct methods consist of dis-
cretizing both the state and the control, so as to reduce the optimal control
problem to a constrained optimization problem in finite dimension – this is
known as the discretize then control/optimize paradigm. Indirect methods
on the other hand consist of solving numerically the boundary value problem
derived from the application of the Pontryagin maximum principle (which
is a control/optimize then discretize paradigm). Both methods are known
to suffer from issues regarding initialization. Yet, the knowledge that turn-
pike is valid for the underlying optimal control problem can be used as a
prior for constructing the initial point. Following (Trélat and Zuazua 2015),
we briefly present how this can be done for indirect methods in particular,
where turnpike provides a clever insight. For direct methods, the turnpike
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property also provides significant speedup and accuracy in the optimization
scheme, in which one merely initializes the method precisely at the turnpike.

11.2. Setting

In the context of optimal PDE control, one generally first semi-discretizes
the PDE in the spatial (generally, any non-time) variable with care, and
considers some quadrature formula for the cost functional. Let us thus focus
on optimal ODE control, to have a clearer picture of the turnpike insights.
We consider a generic optimal control problem of the form

inf
u∈L2(0,T ;Rm)
y solves (11.2)

∫ T

0
f0(y(t), u(t)) dt, (11.1)

where the underlying ODE constraint is
{
ẏ(t) = f(y(t), u(t)) in (0, T ),

y(0) = y0 ∈ Rd.
(11.2)

We avoid final conditions or pay-offs for simplicity; the running cost f0 in
(11.1) is assumed to satisfy necessary convexity, coercivity and continuity
assumptions for ensuring (at least) the existence of solutions. One applies
the Pontryagin Maximum Principle for an optimal pair (u, y) to find the
existence of an adjoint state p such that





ẏ(t) = ∂pH(y(t), p(t), u(t)) in (0, T ),

ṗ(t) = −∂yH(y(t), p(t), u(t)) in (0, T ),

y(0) = y0,

p(T ) = 0,

(11.3)

with u(t) being found by solving

∂uH(y(t), p(t), u(t)) = 0 for t ∈ (0, T ). (11.4)

Recall that the Hamiltonian H is given by H(y, p, u) = p · f(y, u) + f0(y, u).
One notes that ∂pH(y, p, u) = f(y, u); moreover, in the LQ setting, one
clearly recovers u = B∗p.

11.3. Shooting method

If we assume that equation (11.4) gives an explicit representation for u in
terms of (y, p) (as is the case, for instance, when the Hamiltonian is a power-
like nonlinearity in u, as is typical in most cases), we see the optimality
system (11.3) as a shooting problem: setting z := (y, p), due to (11.4), one
writes the first two equations in (11.3) as

ż(t) = F(z(t)) for t ∈ (0, T ), (11.5)
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and the latter two as

G(z(0), z(T )) = 0. (11.6)

In the classic setting of the shooting method, one somehow initializes the
datum z0 ∈ R2d, and finds the solution z(t; z0) to

{
ż(t) = F(z(t)) in (0, T ),

z(0) = z0.
(11.7)

With this, (11.5) – (11.6) is equivalent to finding a z0 ∈ R2d such that

R(z0) := G(z(0; z0), z(T ; z0)) = 0. (11.8)

Only the d last components of z0 are unknown, as z0 = (y0, p(0)) and
y0 ∈ Rd is fixed. We are thus only finding the roots of equation (11.8) over
Rd. This is usually done by means of a Newton method, combined with
one’s favorite numerical integration method for solving (11.7).

11.3.1. The turnpike property as a blueprint

Due to the small domain of convergence of the Newton method, it is hard
to initialize such a method. Many remedies exist for specific cases. (See
(Trélat 2012).) All things considered, in order to guarantee an inkling of
convergence, one needs to provide an adequate initialization of z0. Note
that

• The proximity entailed by turnpike cannot be used directly to ensure
the convergence of the shooting method described above, if imple-
mented in the usual way. Indeed, this is due to the fact that one knows
the solution over [ε, T − ε] for some ε > 0, but not at the terminal
points t = 0 and t = T .

• The natural idea is then to modify the usual implementation of the
shooting method and to initialize it at some arbitrary point of [ε, T−ε],
where we know that z(t) will be exponentially near the turnpike. For
instance, we select t = T/2.

This leads to the following variant suggested by (Trélat and Zuazua 2015),
which has been shown to be quite effective by means of several numerical
experiments.
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Algorithm 1: Turnpike-enhanced shooting method.

Unknown is z0 ∈ R2d, designating the value z
(
T
2

)
;

Initialization: z0 = (y, p), where (y, p) is the optimal steady pair;
Then iterate

1 Integrate (11.5) backwards in time over [0, T/2] to get a value of
z(0; z0);

2 Integrate (11.5) forwards in time over [T/2, T ] to get a value of
z(T ; z0);

3 The unknown z0 is tuned (through a Newton method) so that

R(z0) = G(z(0, z0), z(T, z0)) = 0.

12. Hamilton-Jacobi-Bellman asymptotics

12.1. Setting

The turnpike property for linear, finite-dimensional systems can also be used
to derive the asymptotics of solutions to the associated Hamilton-Jacobi-
Bellman equations. Following the recent work (Esteve et al. 2020), let us
make precise the specific setup and the exact asymptotic behavior. We
consider the finite dimensional system

{
ẏ(t) = Ay(t) +Bu(t) in (0, T ),

y(0) = x
(12.1)

where A ∈ Rd×d(R), B ∈ Rd×m(R) with d,m > 1 (typically, of course,
d > m). The initial datum is denoted27 by x ∈ Rd. We consider the
following linear quadratic (LQ) optimal control problem

inf
u ∈L2(0,T ;Rm)
y solves(12.1)

φ(y(T )) +
1

2

∫ T

0
‖y(t)− yd‖2 dt+

1

2

∫ T

0
‖u(t)‖2 dt

︸ ︷︷ ︸
:=JT,x(u)

, (12.2)

where yd ∈ Rd is a given target, and φ ∈ Liploc(Rd;R) is a final pay-off
which is bounded from below. More general scenarios can be considered,
such as, for instance, replacing the state tracking term by ‖Cy(t) − yd‖2
for some matrix C ∈ Rd×d(R). We focus on the simpler case of JT,x to
avoid technical details and additional assumptions, and we refer to (Esteve
et al. 2020) for more details.

12.2. Hamilton-Jacobi-Bellman equation

Now, the main goal is to establish a connection between the turnpike prop-
erty of the solution (uT , yT ) of (12.2), and the asymptotic behavior, as

27 . . . as it will play the role of the spatial variable for the value function V (T, x).
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T → +∞, of the value function V (T, x) associated to (12.2). The latter is
defined as

V (T, x) := inf
u∈L2(0,T ;Rm)
y solves (12.1)

JT,x(u).

We recall that V (T, x) is the unique viscosity solution28 to the Hamilton-
Jacobi-Bellman (HJB) equation



∂TV +

1

2
‖B∗∇xV ‖2 −Ax · ∇xV =

1

2
‖x− yd‖2 in (0,+∞)× Rd,

V|t=0
= φ in Rd.

(12.3)

12.3. Asymptotics of the value function

There is a large literature which already deals with the asymptotics of solu-
tions to HJB equations ((Barles and Souganidis 2000), (Fujita, Ishii and
Loreti 2006), (Ishii 2006), (Ishii 2008), (Barles, Ley, Nguyen and Phan
2019)). What we present herein, namely the study of (Esteve-Yagüe et
al. 2020b), is a characterization of the HJB asymptotics through the turn-
pike property in the finite-dimensional, LQ setting, which is a rather natural
idea.

When studying the long-time behavior of V (T, x), one may be inclined
to simply set T = +∞ in (12.2) and characterize the resulting problem.
This approach fails in general since there is no reason to guarantee that
the running cost of JT,x is integrable in (0,+∞) for an arbitrary u ∈
L2

loc(0,+∞;Rm). At this point, one should use the insight that is provided
by the turnpike property: when T � 1, the running cost of JT,x, evaluated
along an optimal pair (uT , yT ) solving (12.2), satisfies

1

2
‖yT (t)− yd‖2 +

1

2
‖uT (t)‖2 ∼ Vs

for any t ∈ (0, T ) away from t = 0 and t = T . Here, Vs denotes the steady
cost corresponding to JT,x, namely

Vs := inf
(us,ys)∈Rm×Rd
Ays+Bus=0

1

2
‖ys − yd‖2 +

1

2
‖us‖2

︸ ︷︷ ︸
:=Js(us)

.

28 As noted in (Esteve et al. 2020), considering a final pay-off φ in the LQ problem
consisting of minimizing JT,x subject to (12.1) allows to study the associated Hamilton-
Jacobi-Bellman equation with a general initial condition (equal to φ). That being said,
when φ is non-convex (even if smooth), the gradient of the solution to the HJB equation
would cease to exist in the classical sense for T � 1. Therefore one has to work in the
setting of viscosity solutions.
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Hence, the lack of integrability when considering the infinite time horizon
problem can be handled by subtracting the constant Vs from said running
cost. Consequently, in view of this discussion, we consider the corrected,
infinite time horizon functional

J∞,x(u) :=

∫ ∞

0

{
1

2
‖y(t)− yd‖2 +

1

2
‖u(t)‖2 − Vs

}
dt,

defined over u ∈ Ax, where

Ax :=

{
u ∈ L2

loc(0,+∞;Rm)

∣∣∣∣∣ y solves (12.1),

1

2
‖y(·)− yd‖2 +

1

2
‖u(·)‖2 − Vs ∈ L1(0,+∞)

}
.

The space Ax can be shown to be non-void for x ∈ Rd by assuming that the
pair (A,B) is stabilizable ((Esteve et al. 2020)). We now denote by V∞(x)
the value function for J∞,x, namely

V∞(x) := inf
u∈Ax

J∞,x(u).

Note that V∞ is independent of the pay-off φ. In fact, it can be shown
((Esteve et al. 2020)) that V∞ ∈ C1(Rd) is, up to a constant, the unique
viscosity solution to the stationary Hamilton-Jacobi equation

Vs +
1

2
‖B∗∇xV∞‖2 −Ax · ∇xV∞ =

1

2
‖x− yd‖2 in Rd.

The following result can then be shown to hold.

Theorem 12.1 ((Esteve et al. 2020)). Suppose φ ∈ Liploc(Rd;R) is bounded
from below, and let yd ∈ Rd. Suppose that the exponential turnpike prop-
erty holds for (12.2) – (12.1). Then, for any bounded set Ω ⊂ Rd, we have

V (T, x)− VsT −−−−−→
T→+∞

V∞(x) + λ∞,

uniformly for x ∈ Ω. Here, λ∞ ∈ R is given by

λ∞ = lim
T→+∞

(
V (T, y)− VsT

)
,

where y ∈ Rd is the optimal steady state associated to the global minimizer
u ∈ Rd of Js.

Looking at the above theorem, one sees that, for any x ∈ Ω ⊂ Rd, the
value function V (T, x) has the following asymptotic decomposition

V (T, x) ∼ V∞(x) + VsT + λ∞

as T → +∞. The authors in (Esteve et al. 2020) provide the following
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interpretation of each of the three terms, in terms of what they signify
regarding the turnpike property for (12.2).

• The term V∞(x) designates the cost of stabilizing the trajectory yT (t)
from the initial state x at time t = 0 to the turnpike y. The opti-
mal strategy for the infinite time horizon problem (i.e. (12.2) with
T = +∞) would rather be to stabilize towards the turnpike y and re-
main in that configuration forever. Said stabilizing phase is not seen
in the classical definition of the infinite time horizon problem (see e.g.
(Fleming and McEneaney 1995)), where the limit of the time averages
only captures the transient arc during which the optima are close to
the turnpike.

• The term VsT corresponds to the running cost accumulated in the
intermediate, transient arc, during which the time-evolution optima
are close to the steady ones. The constant Vs is commonly referred to
as the ergodic constant.

• The constant λ∞ designates the cost of the final arc, namely the one
during which the optimal trajectory yT leaves the turnpike y in order
to minimize the final pay-off φ. Although this final arc does not appear
in the infinite time horizon problem, it does appear in the finite time
horizon one, no matter how large T is. Thus, it ought to be taken
into account when analyzing the behavior of V (T, x) as T → +∞.
One can separate this final arc from the remainder of the trajectory
by considering the finite time horizon problem with y as initial state.
In this way, the cost of reaching the turnpike y is 0. One may then
subtract this cost during the transient arc VsT .

13. Deep learning

As implied in the introduction, and using the theory developed in Section
10, the turnpike property may appear and be used as a guideline in the
context of supervised learning via residual neural networks. For such neural
networks, which can in essence be interpreted as time-discretized ODEs,
with a specific scalar nonlinearity acting elementwise, and with controls
entering the dynamics in some nonlinear way, found by minimizing some
cost functional, any running target will designate the turnpike (namely, the
unique optimal steady state solution). Such a property will be due to the
fact that some of the controls are of a multiplicative nature – consequently,
any constant vector will be a steady state when the controls are null. In
turn, this will lead to a turnpike property without a final arc near t = T ,
namely, roughly, ‖yT (t) − y‖ + ‖uT (t)‖ would be in O(e−λt). The latter is
an exponential stability estimate, which ensures that the optimal controls
uT (t) are exponentially small in every time t (designating a layer), while the
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trajectories approximate the targets arbitrarily well in large time. Hence,
in addition to providing a quantitative estimate for the number of layers
needed to interpolate the data, the trained states would oscillate little over
layers, which could be beneficial for generalization on unseen data.

Let us give more details and structure regarding the above discussion. We
refer readers with a machine learning background directly to Section 13.3.

13.1. ResNets and optimal control

Supervised learning aims to approximate an unknown function

f : X → Y
from data {

x(i), y(i) = f
(
x(i)
)}

i∈[n]
⊂ X × Y.

Here and henceforth, [n] := {1, . . . , n}. Typically in practice, X ⊂ Rd,
whereas either Y ⊂ Rm (namely, we are solving a regression task) or Y ⊂ N
with #Y = m, m > 2 (namely solving a classification task). Among the
many possible classes of functions from which one can construct an approx-
imation of f (e.g., Fourier series, wavelets, and so on), neural networks have
proven to be the most promising one for many computational tasks, in par-
ticular large scale ones such as image recognition (Krizhevsky, Sutskever
and Hinton 2012). In particular, the large depth (number of layers) of the
networks used in these experiments has been observed to play a key role in
this computational supremacy.

Residual neural networks. A recent and very popular neural network
architecture are the so-called residual neural networks (ResNets, (He, Zhang,
Ren and Sun 2016)). They may, in the simplest case (see Remark 13.2 for
extensions), be cast as discrete-time dynamical systems of the mould

{
xk+1
i = xki + σ

(
wkxki + bk

)
for k ∈ {0, . . . , nt − 1}

x0
i = x(i)

(13.1)

for all i ∈ [n]. The unknowns in system (13.1) are the states xki ∈ Rd for

any i ∈ [n], while
{
wk, bk

}nt−1

k=0
are the controls (referred to as parameters),

with wk ∈ Rd×d, and bk ∈ Rd. Furthermore, σ ∈ Lip(R) is a prescribed
scalar, nonlinear function, defined component-wise in (13.1) (the commonly-
used example being x 7→ max{x, 0}, but also x 7→ tanh(x)), while nt > 1
designates the number of layers of the network, referred to as the depth, as
mentioned in the preceding paragraph.

The controls29 uk =
(
wk, bk

)
for all k > 0 are found by solving the regu-

29 Thus uk ∈ Rd
2+d is a column vector containing the components of wk and bk. For
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larized empirical risk minimization problem30

inf
{uk}nt−1

k=0
={wk,bk}nt−1

k=0

1

n

n∑

i=1

loss
(
Pxnti , y

(i)
)

︸ ︷︷ ︸
empirical risk :=E(xnt )

+α

nt−1∑

k=0

∥∥∥uk
∥∥∥

2
, (13.2)

where α > 0 is fixed, while

loss(·, ·) ∈ C0(Rm × Y;R)

is a given function which is bounded from below (say, for simplicity, by 0)
and which differs depending on the task in hand – for instance,

loss(x, y) := ‖x− y‖pp
for p ∈ {1, 2} is commonly used for regression tasks (here and henceforth
the norm designates the entry-wise matrix norm), while the cross-entropy
loss31

loss(x, y) = − log

(
exy∑m
j=1 e

xj

)
(x, y) ∈ Rm × [m]

is commonly used for classification tasks. Finally, P : Rd → Rm is an
affine map (the output layer), whose coefficients in practice are part of the
optimizable parameters. More precisely,

Rd 3 x 7→ Px := wntx+ bnt ∈ Rm.

Herein, we shall assume that P is given and fixed.

Remark 13.1 (Training). In practice, the minimization problem is solved
by variants of stochastic gradient descent – a procedure colloquially named
as training. We emphasize that here, we shall focus on deriving properties
of the global minimizers of the regularized empirical risk rather than conver-
gence of training algorithms. Our presentation is – in principle – algorithm
independent.

Neural ODEs. One may readily observe (as done by (E 2017), (Haber

instance, and without loss of generality, this is done by vectorizing the matrix wk

followed by appending the column vector bk.
30 This is by no means a general formulation. One may consider other ways to regularize

the controls and promote different patterns, such as sparsity via `1–regularization, and
so on.

31 More accurately, the cross-entropy loss with softmax activation, sometimes also referred
to as cross-entropy with ”logits” (with the ”logits” designating the pre-softmax vectors,
namely x in this case).
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and Ruthotto 2017)) that for any i ∈ [n], and for T > 0, (13.1) is a forward
Euler scheme for{

ẋi(t) = σ(w(t)xi(t) + b(t)) for t ∈ (0, T )

xi(0) = x(i).
(13.3)

Continuous-time ResNets such as (13.3) are commonly referred to as neural
ordinary differential equations (neural ODEs) in the computing literature32.
The regularized empirical risk minimization problem reduces to the optimal
control problem with final cost (defined in (13.2))

inf
u:=[w,b]∈L2(0,T ;Rdu )

xi(·) solves (13.3)

E(x(T )) + α

∫ T

0
‖u(t)‖2 dt. (13.4)

Here, we used the notation x :=
[
x>1 , . . . ,x

>
n

]> ∈ Rdx , with dx := d · n. We
note that, written as such, training a ResNet is an optimal control problem
for a nonlinear, discrete (or continuous)-time dynamical system. There is,
however, an important point to be made in addition. In statistical learning,
the concept of generalization, namely ensuring reliable performance of the
trained/controlled network on unseen data (namely, new points outside of
{x(i), y(i)}i∈[n]), is of paramount importance. And so, one sees that, contrary
to the optimal control problems we considered in preceding sections, wherein
we generally fix a single initial datum and find an optimal control (which
may or may not be in feedback form), in (13.3) – (13.4) we find a single pair
of time-dependent controls for n different initial and target data33.

Remark 13.2 (Settings). • One may consider variations of the non-
linear dynamics in (13.1) or (13.3), as is typically done for canonical
feed-forward neural networks. Among many possibilities, some simple
examples could include

ẋi(t) = w(t)σ(xi(t)) + b(t) for t ∈ (0, T ), (13.5)

and

ẋi(t) = w1(t)σ(w2(t)xi(t) + b2(t)) + b1(t) for t ∈ (0, T ), (13.6)

for i ∈ [n]. In (13.6), one could also envisage having w2(t) ∈ Rdhid×d

32 Albeit in the paper (Chen, Rubanova, Bettencourt and Duvenaud 2018) where this
denomination was originally introduced, the controls are time-independent.

33 In control-theoretical terms, this is more in the spirit of notions such as simultane-
ous controllability or ensemble controllability, studied in various different contexts,
see, for instance, (Lions 1988b), (Tucsnak and Weiss 2000) for control systems with
different control operators, or (Beauchard, Coron and Rouchon 2010), (Lohéac and
Zuazua 2016), (Agrachev, Baryshnikov and Sarychev 2016) for control systems with
parameter-dependent dynamics.
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and w1(t) ∈ Rd×dhid (accordingly, b2 ∈ Rdhid and b1 ∈ Rd), where
dhid 6= d.

• We stress that considering solely an L2(0, T ;Rdu)–regularization of the
controls (w, b) in (13.4) may not be enough for guaranteeing the ex-
istence of minimizers when considering underlying networks with dy-
namics such as (13.3) or (13.6) (although it does suffice for (13.5)).
This is due to the way in which the nonlinearity σ is applied upon the
controls. To our knowledge, it is not clear how one can ensure com-
pactness of minimizing sequences in L1(0, T ;Rdu), needed for passing to
the limit within the continuous-time neural network. In such cases, one
should rather replace the L2(0, T ;Rdu) norm by either an H1(0, T ;Rdu)
or BV(0, T ;Rdu) norm regularization, both of which would ensure the
desired compactness. This issue is specific to the continuous-time set-
ting, as in the discrete-time, finite dimensional setting, weak and strong
convergences coincide.

• First of all, we ought to suppose that x(i) 6= x(j) for i 6= j. Now, due
to the uniqueness of Lipschitz-nonlinear ODEs (in both directions of
time), trajectories corresponding to different initial data cannot cross34.
Hence, in the context of binary classification tasks for instance (namely,
where f is the characteristic function of some set), if the original dataset
is not linearly separable, one cannot separate the dataset by a controlled
neural ODE flow in a way that the underlying topology of the data
(namely, the unknown function f) is captured and generalized. As
presented in (Dupont, Doucet and Teh 2019), a simple remedy35 for
this issue in this case is to embed x(i) ∈ Rd, for any i ∈ [n], in a higher
dimensional space, for instance in Rd+1, by setting

x0
i =

[
x(i)

0

]
(13.7)

for i ∈ [n]. Unless stated otherwise, we shall henceforth consider initial
data in such form, and use d to denote the dimension of the augmented
system.

• When formulated as in (13.1) – (13.3), ResNets do not take into account
variations of the dimensions of the weights and states over layers, which
inevitably arise when considering convolutional layers, ubiquitous in

34 In the discrete-time setting, this is not an issue on coarse grids (namely when the
time-step 4t is large), as is the case for the canonical ResNet, where it equals 1.

35 Another remedy consists in considering momentum ResNets ((Sander, Ablin, Blondel
and Peyré 2021)), which consist in adding ẍ(t) to the ODE.
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computer vision tasks. To alleviate this issue, one may consider
{

xk+1
i = Πkxki + σ

(
wkxki + bk

)
for k ∈ {0, . . . , nt − 1}

x0
i = x(i)

(13.8)

for all i ∈ [n], where wk ∈ Rdk×dk−1 and consequently xki ∈ Rdk ,
with dk being positive integers (called widths) such that d0 = d, and
Πk : Rdk → Rdk+1 . Due to the presence of Πk in (13.8), one cannot
interpret (13.8) (at least not for general Πk) as some numerical scheme
for a nonlinear ODE. However, when the widths are seen as playing the
role of a ”spatial” variable, then one candidate for a continuous-time
analog for (13.8) is



∂txi(t, s) = σ

(∫ 1

0
w(t, s, ξ)xi(t, ξ) dξ + b(t, s)

)
(0, T )× (0, 1)

xi(0, s) = (Ex(i))(s) (0, 1)

(13.9)
for i ∈ [n]. Here, the unknown xi, as well as the controls w and
b, are scalar-valued functions, and E : Rd → C0([0, 1]) is such that

Ex(i)(sj) = x
(i)
j for some {sj}j∈[d] ⊂ [0, 1] (constructed, for instance,

by polynomial or spline interpolation). The integro-differential equa-
tion (13.9) was first suggested in (Liu and Markowich 2020), albeit for
a different purpose in mean-field analysis. Rather, in (Esteve-Yagüe et
al. 2020a), (13.9) is found to yield (13.8) by using a simple discretiza-
tion procedure, which, for k ∈ {0, . . . , nt} and tk := kT/nt, consists
in choosing the spatial nodes adaptively as {sj(tk)}j∈[dk] ⊂ [0, 1], or-
dered and equipartitioned (for simplicity). This will result in time-
discrete states and controls which will have different dimensions (dk)
when evaluated at different time-instances/layers (tk). We refer the
interested reader to (Esteve-Yagüe et al. 2020a, Section 6) for the com-
plete derivation and technical details.

The neural ODE formalism of deep learning has been used to great effect
in several machine learning contexts. To name a few, these include the use
of adaptive ODE solvers ((Chen et al. 2018), (Dupont et al. 2019), (Kidger,
Morrill, Foster and Lyons 2020)) and symplectic schemes ((Celledoni, Ehrhardt,
Etmann, McLachlan, Owren, Schönlieb and Sherry 2021)) for efficient train-
ing, the use of indirect training algorithms based on the Pontryagin Maxi-
mum Principle ((Li, Chen, Tai and E 2017), (Benning, Celledoni, Ehrhardt,
Owren and Schönlieb 2019)), image super-resolution ((He, Mo, Wang, Liu,
Yang and Cheng 2019)), as well as unsupervised learning and generative
modeling ((Grathwohl, Chen, Bettencourt, Sutskever and Duvenaud 2018),
(Papamakarios, Nalisnick, Rezende, Mohamed and Lakshminarayanan 2019)).
The origins of continuous-time supervised learning date back at least to
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(LeCun, Touresky, Hinton and Sejnowski 1988), in which the back-propagation
method is connected to the adjoint method. See also (Sontag and Sussmann
1997), (Sontag and Qiao 1999) and the references therein for earlier works
in this direction.

13.2. The role of T

In the ResNet (13.1), the time-step 4t = T/nt is fixed (equal to 1 in fact),
and each time instance of a forward Euler discretization of (13.3) would
represent a different layer of (13.1). Hence, whenever the time-step 4t is
fixed, the time horizon T in (13.3) serves as an indicator of the number of
layers nt = T/4t in the ResNet (13.1).

In view of this, and the empirical success of residual neural networks with
large depths, we are interested in studying the behavior of global minimizers
u(·) (and corresponding states {xi(·)}ni=1) solutions to

inf
u∈U (0,T ;Rdu )

xi(·) solves (13.11)

E(x(T )) + α ‖u‖2U (0,T ;Rdu ) , (13.10)

as T → +∞, where the constraint satisfied by the states {xi(·)}ni=1 is given
by the nonlinear ODE

{
ẋi(t) = f(u(t),xi(t)) in (0, T ),

xi(0) = x0
i ,

(13.11)

with f as in (13.3) or (13.5) or (13.6), with x0
i as in (13.7). (We henceforth

drop the subscripts T used in preceding discussions as to not overburden the
notation.) In (13.10), the dimension du of the tensor-valued function u(t),
and its definition, encompass the different dynamics for which there might
be more than a pair of matrix-vector controls (i.e. (13.6)). Here U is either
L2 or H1.

As discussed in the introduction, when one considers an optimal control
problem with solely a final cost as in (13.10), one cannot expect the appear-
ance of the turnpike property. But rather, whenever σ is 1–homogeneous,
U is L2 or H1, and one omits the case of f as in (13.6), it can be shown that
E(x(T )) decays to 0 at most like O

(
1
T

)
(see (Esteve-Yagüe et al. 2020a)).

When E(·) attains its minimum, then the optimal controls u also converge,
when appropriately rescaled, to some solution u? of

inf
u∈U (0,1;Rdu )

xi(·) solves (13.11) in (0,1)
E(x(1))=0

‖u‖2U (0,1;Rdu ), (13.12)

along some subsequence as T → +∞ ((Esteve-Yagüe et al. 2020a)). Problem
(13.12), on the other hand, is seen as the minimal norm control ensuring
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controllability, similarly to what was discussed in the introductory sections
for linear PDEs. Namely, it provides controls of least oscillations among
those who interpolate the data, in the sense that E(x(1)) = 0, which, when
loss is an `p distance, rewrites as Pxi(1) = y(i) for all i ∈ [n].

This convergence result mainly makes use of the fact that, under the
aforementioned homogeneity assumptions, one has f(ζu,x) = ζf(u,x) for
ζ > 0. Hence, given (uT ,xT ) solving ẋT (t) = f(uT (t),xT (t)) for t ∈ (0, T ),
it follows that the rescaled map x1(t) := xT ( tT ) solves ẋ1(t) = f(u1(t),x1(t))

for t ∈ (0, 1), with u1(t) := 1
T uT ( tT ). This rescaling relation yields the

scaling of the norm of the controls

α

∫ T

0
‖uT (t)‖2 dt =

α

T

∫ 1

0
‖u1(t)‖2 dt. (13.13)

In addition to the polynomial convergence of E(x(T )), one sees that (13.13)
also indicates an equivalence of the limits T → +∞ (with α > 0 fixed) and
α↘ 0 (with T fixed)36. The latter is known as the regularization path limit,
and is well-studied in the statistical learning literature, mainly for linear
problems (see (Rosset, Zhu and Hastie 2004), for instance).

While such a result could or might be desirable in practice – due to the
possible generalization properties of the limiting controls–, it does not pro-
vide any specific stability estimates for optimal controls or the trajectories
over each time instant t. This in turn would be desirable for choosing a
sharper number of layers needed to interpolate the dataset, whilst still re-
taining controls of moderate amplitude.

This lack of stability may also be seen numerically. In Figures 13.12
– 13.14, we solve a toy binary classification task, by solving (13.10) with
cross-entropy loss, f as in (13.5) and σ ≡ tanh, making use of an explicit
midpoint scheme with T = 4, nt = 16 and thus 4t = 0.25 (hence, a relative
error of 6.25%, due to the quadratic convergence of the midpoint scheme).

Remark 13.3 (Solutions to (13.12)). It should be noted that the study
of existence of solutions to (13.12) (say, when loss(·, ·) is an `p distance),
namely, the controllability of n � 1 trajectories {xi(·)}i∈[n] of (13.11) cor-

responding to different initial data x0
i , by means of the same controls u(·)

(living in a space which is of a higher dimension than that of each individ-
ual xi), is an independent topic which has attracted considerable interest in
recent years. This particular controllability property has been referred to

36 As a matter of fact, when T is fixed, one can show that the desired result holds for
general dynamics f, without any homogeneity assumptions – the proof follows the same
arguments as those presented in (Esteve-Yagüe et al. 2020a). Homogeneity is needed
solely to ensure the scaling in time, which is where one sees the appearance of a factor
of 1/T , and thus the pattern when T → +∞.
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Figure 13.12: The training error E(x(t)) is only minimal at time t = T = 4 (left), and we
do not see a turnpike-like stability for the trajectories (right).
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Figure 13.13: We plot the trained classifier Pxx(T ) for any initial datum x ∈ [−1.1, 1.1]2,
along with the training data, as well as test data. The shape of the data is captured
accurately, and thus the unknown function f is approximated well, ensuring generalization,
but only at t = T , as per Figure 13.12.

as ensemble controllability, universal interpolation, or simultaneous control-
lability, among other denominations. We refer to several recent works for
various different techniques – for instance, (Agrachev and Sarychev 2021)
and (Cuchiero, Larsson and Teichmann 2020), where the authors make use
of geometric, Lie bracket techniques for dynamics such as (13.5) and (13.3),
for which such tools are quite natural (see (Coron 2007) for a detailed pre-
sentation on Lie algebra techniques for nonlinear control). For more com-
pound neural ODE dynamics, such as (13.6), we refer to (Ruiz-Balet and
Zuazua 2021) and (Li, Lin and Shen 2019), where the controls are built ex-
plicitly in a constructive way. In particular, in these works (see also (Ruiz-
Balet, Affili and Zuazua 2021)), the link with the closely related topic of uni-
versal approximation (see the seminal works (Cybenko 1989), (Pinkus 1999),
and also the recent survey (DeVore, Hanin and Petrova 2021)) is clearly es-
tablished. The analog property for discrete-time neural networks has been
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Figure 13.14: The evolution of the trajectories {xi(t)}i∈[n], solutions to (13.5) with data
{x0

i }i∈[n] (top left), shown for t 6 1 (top right), t 6 2 (bottom left), t 6 T = 4 (bottom
right). Separation of the dataset is only done towards t = T , as per Figure 13.12.

thoroughly investigated in the statistical learning literature, under the name
of finite sample expressivity (albeit mainly for simplified models such as
linear regression or shallow neural networks, see (Zhang, Bengio, Hardt,
Recht and Vinyals 2021) for further details). The study of which optimal
controls/parameters are the ”best” (in the sense of generalization) in this
interpolating regime remains an open problem.

13.3. Turnpike and turnpike-like properties

Augmented functional. For the turnpike property to hold, one would
require more coercivity of the cost functional to be minimized with respect to
the state over all time. Looking at (13.10) (and (13.2)), let us thus consider
its natural extension, which is an augmented empirical risk minimization
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problem of the form

inf
u∈U (0,T ;Rdu )

xi(·) solves (13.11)

∫ T

0
E(x(t)) dt+ α

∫ T

0
‖u(t)‖2 dt. (13.14)

When considered for the discrete-time ResNet case, by using Riemann sums,
(13.14) would reformulate as

inf
{uk}nt−1

k=0
⊂Rdu

xk+1
i =xki +f(uk,xki )

4t
(

n∑

i=1

nt−1∑

k=1

E(xk) + α

nt−1∑

k=0

∥∥∥uk
∥∥∥

2
)
. (13.15)

One sees in (13.15) that the artificial tracking term introduces an additional
regularization of the states over every layer k ∈ {1, . . . , nt − 1}.
The steady problem. A turnpike property for (13.14) would entail prox-
imity of solutions to (13.14) to the corresponding stationary optimal control
problem. The latter thus needs to be properly characterized. Let us assume
for now that E(·) attains its minimum (say, 0, for simplicity). Then the
stationary problem corresponding to (13.14) would read as

inf
(u,x)∈Rdu×Rdn
f(u,xi)=0, i∈[n]

E(x) + α‖u‖2. (13.16)

But due to the specific form of f and u, which are as in (13.3), (13.5) or
(13.6), one sees that the unique optimal solution to (13.16) is u ≡ 0, with
x ∈ argmin E. Hence, the turnpike is a couple (u,x) at which the running
cost (u,x) 7→ E(x) + ‖u‖2 is minimized, with x = {xi}i∈[n] also being a
steady state of the underlying ODE.

Exponential turnpike/decay/stability. As the state turnpike is a steady
state of the neural ODE, and there is no final cost, one should expect the
final arc near t = T of the exponential turnpike estimate to vanish – this
is indeed seen in numerical experiments presented in Figures 13.15 – 13.17.
In other words, the turnpike property for the supervised learning problem
(13.14) would be characterized by a decay/stability estimate of the form

E(x(t)) + ‖u(t)‖2 6 Ce−λt, (13.17)

for all t ∈ [0, T ] and for some constants C > 0 and λ > 0 independent of T .
Furthermore, when argmin E 6= ∅, we would also have

inf
{zi}i∈[n] ∈ argmin E

n∑

i=1

‖xi(t)− zi‖2 6 Ce−λt.

Such results are indeed shown, in specific settings (`2 losses), in (Esteve-
Yagüe et al. 2020a) – this is the theory presented in Section 10. We also
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refer the reader to (Esteve-Yagüe and Geshkovski 2021) for results with
general losses and L1(0, T ;Rdu) control penalties, albeit with polynomial
decay rates. A proof of the turnpike property (13.17) in the case of general
losses with L2 control penalties is an open problem.

What does the decay (13.17) entail? Taking into account the fact that
the time-step 4t = T/nt is fixed, (13.17) provides a quantitative estimate of
the number of layers needed to fit the data, whilst keeping the controls small
(thus possibly helping in generalization). In fact, these estimates ensure and
indicate that the time horizon (or number of layers) ought not be large at
all so that the error reaches 0 with controls of small amplitude (in our
toy experiments for instance, we use T = 4, and stability occurs beyond a
stopping time (layer) T ∗ ∼ 1 or so). In other words, the exponential stability
indicates that any layers beyond a certain stopping time T ∗ can be dropped
(in theory) from training.

Remark 13.4 (Stability trade-off). Let us briefly comment on the choice
of T .

• The time T ought to be large enough (namely, T > T ∗ for some T ∗

large enough) for (13.17) to hold in the general case, in particular if one
refers to the strategy presented in Section 10. Therein, the minimal
time T ∗ > 0 for which the stability property holds, is seen to depend
on the data

{
x(i), y(i)

}
i∈[n]

through (13.12) (the minimal norm control

which interpolates the dataset), and typically this dependence can be
exponential. A precise characterization of (13.12) in terms of the ”com-
plexity” of the data (or even the number of samples37 n) is not known
to our knowledge in this nonlinear setting. Partial results are provided
in (Ruiz-Balet and Zuazua 2021), where a characterization in terms of
the fractal dimension of the dataset is provided, but solely when re-
ferring to explicitly constructed controls/parameters which interpolate
the data, and not those of minimal norm.

• In turn, the presence of a minimal time T ∗ would mean that one still
needs several layers – namely a large enough T–, before entering in
the stability regime, from which point on the training error can be

37 Note that this may be an important caveat in the direct application of the techniques
presented in Section 10 to the neural ODE setting. Due to the multiplicative nature of
the controls, when one applies the Grönwall inequality in various instances, a factor of
n will appear, and ultimately, one could end up with constants in (13.17) which depend
on n in an exponential way. We believe that this dependence could be sharpened by an
appropriate scaling of the augmented functional. On another hand, estimate (13.17)
could also insinuate an interplay between n and T , once the underlying constants have
been sharpened. We believe that this presentation is solely a first step in obtaining a
clearer picture.
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ensured to be exponentially small. This insinuates a trade-off in how
large T should actually be. In our numerical simulations, we see that
T is generally rather small, but one should keep in mind that these are
toy examples, and do not convey possible difficulties encountered for
various real-life datasets, which may be significantly more complex and
high-dimensional.

All in all, we believe that further clarification on the role and size of T in
the neural ODE context is an open problem.

Remark 13.5 (Non-coercive losses). Interestingly enough, the expo-
nential stability stated in (13.17) may also be observed for running costs
which do not attain a minimum, as is the case for instance for cross-entropy
losses. (See for example Figures 13.15 – 13.17.) In this case, the cost func-
tional is actually not coercive with respect to the state. As a matter of
fact, E(x(t)) approaches 0 only if every trajectory xi(t) for i ∈ [n] grows to
+∞ in an appropriate direction in Rd. Thus, in this non-coercive case, we
do not interpret the numerical results below as a turnpike property for the
state, since the turnpike would depend (and increase with) T . Rather, the
trajectories x(t) become almost stationary (due to the exponentially small
error and controls) beyond time t > T ∗ to some point x ∈ Rdx , which is
exponentially ”sliding” to +∞ as T → +∞.
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Figure 13.15: Decay of the training error (left) and ”stabilization” of the trained trajec-
tories {xi(t)}i∈[n] (solutions to (13.6)) and {Pxi(t)}i∈[n] (right) for t ∈ [0, 4]. We see
that the error reaches 0 and trajectories become almost stationary in time ∼ 1, and since
4t = 0.25, we solely need 4 layers to train the network appropriately.

The decay may also be observed for ResNets (where the time-grid is coarse,
with 4t = 1), and also on datasets such as MNIST (LeCun, Cortes and
Burges 2010). In the latter, each input sample x(i) is a grayscale, 28 × 28
image of a handwritten digit, and thus an element of R784; the dataset has
10 labels: y(i) ∈ [10]. The appearance of the turnpike property for the corre-
sponding ResNet, i.e. the discretized ODE on a coarse mesh (which has been
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Figure 13.16: We plot the trained classifier Pxx(T ) for any initial datum x ∈ [−1.1, 1.1]2,
along with the training data, as well as test data. The shape of the dataset is captured
accurately and thus the unknown function f is approximated well, ensuring generalization,
just as in Figure 13.13, but this regime is actually reached in time t ∼ 1, unlike for Figure
13.13 (t = T = 4).

shown to hold independently in (Faulwasser et al. 2021b), by making use of
dissipativity arguments) may also be interpreted as a stability guarantee for
the forward Euler scheme.

To justify these claims, we make use of (13.6) and a forward Euler scheme
to obtain a corresponding ResNet with fixed time-step 4t = 1, T = 20,
dhid = 32 and σ ≡ tanh. We make use of fully connected layers only.
The output layer is parametrized by Px = p1x + p2, where p1 ∈ R10×784,
p2 ∈ R10 are part of the optimization variables. We show the results of
the experiments in Figures 13.18 – 13.20. Analog experiments for Fashion-
MNIST are shown in Figures 13.21 – 13.22.

14. Further topics

14.1. Model predictive control

The turnpike property has also been used in the design of adequate tempo-
ral grids for numerical discretizations which are moulded to model predictive
control (MPC) feedback loops. We henceforth follow (Grüne et al. 2019).
Model predictive control ((Garcia, Prett and Morari 1989), (Grüne and
Pannek 2017)) is one of the most successful paradigms in contemporary
control theory, with reliable performance in several practical applications,
ranging from chemical to aerospace engineering. For a given, arbitrary,
time-dependent optimal control problem set in a time horizon [0, T ], which
we designate by OCP, in which one looks for an optimal control u(t) and
associated state y(t) solving an ODE or PDE, the standard MPC algorithm
can roughly be summarized in Algorithm 2.

Note that in Algorithm 2, one would normally use a uniform mesh for dis-
cretizing the time interval [0, T ], and use one’s favorite quadrature formula
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Figure 13.17: The evolution of the trajectories {xi(t)}i∈[n], solutions to (13.5) with data
{x0

i }i∈[n] (top left), shown for t 6 1 (top right), t 6 2 (bottom left), t 6 T = 4 (bottom
right). The trajectories are stationary (in a separation regime) beyond time t > 1.
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Figure 13.18: Decay of the training error (left) and ”stabilization” of the trained trajec-
tories x(t) and {Pxi(t)}i∈[n] (right).

to integrate the underlying ODE (or spatially-discretized PDE). And since
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Figure 10. Example 4.4: The decay of the training error (left) and
stabilization of the trained trajectories x(t) and {Pxi(t)}i2[N ] (right).

t = 0 t = 2 t = 8 t = 15 t = 20

Figure 11. Example 4.4: We depict the evolution of two individual
samples xi(t) 2 R784 mapped onto a 28 ⇥ 28 grid. We see that each
trajectory stabilizes to some stationary configuration, and the trained
model tends to compress the input digit samples ahead of classifying
them via the softmax applied to Pxi(t) 2 R10.

regime (E(x(T )) = 0 with E given in (3.4)) when T increases. It is thus of interest to
also illuminate some of the properties of the parameters which allow the trajectory to
reach a minimizer of the empirical risk E, and to see whether such parameters indeed
exist.

By means of an elementary Grönwall argument, we can show the following illustrative
result, which stipulates a lower bound for the amplitude of the weights w in terms of
the dispersion or concentration of the input data.

Proposition 5.1. Let P : Rd
! Rm be surjective, and let T > 0. Assume that for

some parameters [w, b] 2 L
1(0, T ;Rdu) the solution x 2 C

0([0, T ];Rdx) to either (3.3)
or (3.2) satisfies

Pxi(T ) = ~yi for all i 2 [N ]. (5.1)

Figure 13.19: Evolution of two individual samples xi(t) ∈ R784 mapped onto a 28 × 28
grid. Each trajectory reaches some stationary configuration. The trained model tends to
”diffuse” the input signal ahead of classifying via the softmax applied to Pxi(t) ∈ R10.
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Figure 13.20: Validation error and accuracy over epochs (experiments repeated 10 times).
Generalization is not compromised due to the introduction of an integrated empirical risk.

Algorithm 2: Model predictive control (MPC).

Initialize T > τ > 0, k = 0, K > 0, and y(0);
while k < K do

Solve OCP on [0, T ] with initial data y(kτ), giving control uk;
Solve ODE or PDE on [0, T ] with initial data y(kτ) and control
uk, giving state yk;

Set y(t) := yk(t− kτ) and u(t) := uk(t− kτ) for t ∈ [kτ, (k + 1)τ ];
k ← k + 1

end

the MPC algorithm only implements the first part of the trajectory until a
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t = 0 t = 2 t = 8 t = 15 t = 20

Figure 17. Example A.2: We depict the evolution of two individual
samples xi(t) 2 R784 mapped onto a 28 ⇥ 28 grid (both sets of images
are grayscale, but a different colormap is used to enhance visibility).
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Figure 18. Example A.2: The validation error and accuracy over
training epochs (experiments repeated 10 times); as anticipated, gener-
alization is not as good as for the simpler MNIST dataset. The lower
accuracy with respect to state of the art configurations could also be due
to the fact that we do not make use of convolutional layers.

Of course, the same convergences thence hold for wn := diagN (wn) to w† := diagN (w†),
as well as bn := [bn, . . . , bn] to b† := [b†, . . . , b†]. Let x†

2 C
0([0, T ];Rdx) be the unique

solution to (3.3) associated to [w†
, b

†] and the initial datum x0. Let us prove that

xn ����!
n�!1

x† strongly in C
0([0, T ];Rdx) (B.1)

Figure 13.21: The evolution of two individual samples xi(t) ∈ R784 mapped onto a 28×28
grid. Images are grayscale, but a different colormap is used to enhance visibility.

1 5 9 13 17 21 25 29 33 37
Epochs

0.2

0.3

0.4

0.5

0.6

Error

Train

Test

1 5 9 13 17 21 25 29 33 37
Epochs

0.75

0.80

0.85

0.90

0.95

1.00
Accuracy

Train

Test

Figure 13.22: Validation error and accuracy over training epochs (experiments repeated
10 times). The lower accuracy with respect to state of the art configurations is due to the
simplified architecture.

time τ , one is particularly interested in a high accuracy of the computed con-
trol on [0, τ ]. Yet, the turnpike property indicates the precise distribution
of the times for which a resolution of the evolutionary problem is needed:
except for the boundary layers near t = 0 and t = T , the optimal pairs for
the time-dependent problem are essentially constant. As observed in (Grüne
et al. 2019), instead of considering a conventional uniform grid with nt > 1
nodes, one can also construct a turnpike-adapted grid {tj}nt−1

j=0 by solving

∫ tj+1

tj

(
e−λt + e−λ(T−t)

)
dt = C, for all j ∈ {0, . . . , nt − 2}.

Here the constants λ > 0 and C > 0 are externally tuned. The numerical
experiments performed in (Grüne et al. 2019), in the case where the tar-
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get is a steady state, and thus only the term e−λt is needed in the above
construction, insinuate a significant reduction in the number nt of nodes
needed to render the value of the cost functional in the OCP near 0, when
compared to a uniform grid. We also refer the reader (Grüne, Schaller and
Schiela 2020a) for a recent improvement which combines spatial mesh refine-
ment in the context of goal-oriented MPC. All in all, these ideas are quite
broad and go beyond solely MPC design, being in the spirit of what was
presented in the above discussion on deep learning.

14.2. Greedy algorithms

In many practical applications, robustness of the optimal controls with re-
spect to various parameters for the underlying PDE (for instance, diffusivity
or conductivity coefficients, Reynolds number, and so on) needs to be en-
sured to have a viable policy. This should in turn result in the consideration
of a parameter dependent optimal control problem. For instance, consider

inf
u∈L2((0,T )×ω)
y solves (14.2)

∫ T

0
‖y(t)− yd‖2L2(Ω) +

∫ T

0
‖u(t)‖2L2(ω) dt, (14.1)

where




∂ty −∇ · (a(x, ν)∇y) + c(x, ν)y = u1ω in (0, T )× Ω,

y = 0 in (0, T )× ∂Ω,

y|t=0
= y0 in Ω.

(14.2)

Here the coefficients a(·, ν) ∈ L∞(Ω) and c(·, ν) ∈ L∞(Ω) are such that

Ay = −∇ · (a(·, ν)∇y) + c(·, ν)y

is elliptic, and ν ∈ Rd is a parameter. Of course, now, y = y(t, x; ν) will
depend on the parameter ν. But from the Pontryagin Maximum Principle,
one sees that the optimal control uT will be given by uT ≡ pT 1ω, where pT
is the adjoint state, which will thus depend on the parameter ν. Thus, one
has to solve (14.1) for each new choice of ν. This, combined with the time-
dependence, renders the above optimal control problem computationally
unfeasible due to the exorbitant dimensionality it manifests.

The turnpike property can however serve as a remedy to this dimensional-
ity issue. One can aim to rather consider the corresponding elliptic problem,
namely

inf
u∈L2(ω)

y solves (14.4)

‖y − yd‖2L2(Ω) + ‖u‖2L2(ω), (14.3)
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where {
−∇ · (a(x, ν)y) + c(x, ν) = u1ω in Ω,

y = 0 on ∂Ω,
(14.4)

and thus reduce the dimensionality by removing the time-dependence (this
is, in some sense, a model reduction step). On another hand, the parameter
dependence can be addressed in an optimal manner by making use of greedy
algorithms, to determine the most relevant values of a parameter-space and
provide the best possible approximation of the set of parameter dependent
optimal controls.

This is the approach taken in (Hernández-Santamaŕıa, Lazar and Zuazua
2019), inspired by (Lazar and Zuazua 2016). Let us provide brief details.
Assume that the parameter ν ranges within a compact set K ⊂ Rd, and that
the functions ν 7→ a(·, ν) and ν 7→ c(·, ν) are holomorphic38. Now consider
the set of controls solving (14.3) for each ν ∈ K, namely

Us =
{
u(·; ν)

∣∣∣ ν ∈ K
}
.

By making use of the characterization of optimal controls via the adjoint
state, and making use of some classic functional analysis arguments, it can
be seen that Us is a compact subset of L2(ω). Now, given ε > 0, one seeks to
determine a family of parameters {ν1, . . . , νn} ⊂ K, with n = n(ε) > 1, so
that the corresponding controls uν1 , . . . , uνn are such that for every ν ∈ K,
there exists u?ν ∈ span{uν1 , . . . , uνn} such that

‖u?ν − uν‖L2(ω) 6 ε.

This problem can subsequently be solved by making use of greedy algorithms
(also known as matching pursuit) suggested in (Hernández-Santamaŕıa et
al. 2019) and established theory from (Barron, Cohen, Dahmen and DeVore
2008), (DeVore et al. 2013), (Cohen and DeVore 2015), for instance. The
greedy algorithm theory is mostly done for elliptic parameter dependent
PDEs. In the optimal control setting, the turnpike property ensures that the
elliptic theory can then be transferred to the parabolic case. In (Hernández-
Santamaŕıa et al. 2019), the optimal control associated to parameters ν
found by weak greedy algorithms is seen to corroborate this fact through
numerical simulations.

14.3. Mean field games

To conclude, we briefly discuss some links and appearances of the turnpike
properties in mean field games. These are coupled systems modeling the

38 The holomorphy assumption is needed to ensure a polynomial decay of the so-called
Kolmogorov n-widths, used to quantify the best approximation via greedy algorithms.
We refer to (DeVore, Petrova and Wojtaszczyk 2013) for details.
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joint interactions of multiple and many agents, consisting of a Hamilton-
Jacobi-Bellman equation, evolving backward in time, governing the com-
putation of an optimal path for each agent, and a Fokker-Planck equation,
evolving forward in time, governing the evolution of the density of the agents.
Namely, these are systems of the form





−∂tu− ν∆v + H(x,Du) = f1(x,m) in (0, T )× Td,
∂tm− ν∆m+∇ · (m∂pH(x,Du)) = 0 in (0, T )× Td,
m|t=0

= m0 on Td,
u|t=T = φ(x,m(T )) on Td.

(14.5)

Here Td = Rd/Zd denotes the d-dimensional flat torus – this consideration of
spatial domain is done for simplicity regarding boundary conditions. Mean
field games models were introduced in (Lasry and Lions 2007).

Let us begin by motivating the meaning of the equations in (14.5). Sup-
pose that an agent (player) is at location X0 = x ∈ Rd at time τ = 0, and
wishes to ”improve” its position XT at time τ = T . An elementary ap-
proach in proceeding with the resolution of this problem would be to endow
the agent with controls ατ at all time τ , and solve

{
Ẋτ = ατ for τ ∈ (0, T ),

X0 = x.

(We use the notation Xτ to stay in line with common notation in stochastic
calculus.) One finds these controls ατ by minimizing a cost, which in this
theory also accounts for the density of all the agents m(t, x) at time t and
position x. In the absence of noise in the dynamics, the value function will
solve a hyperbolic Hamilton-Jacobi-Bellman equation, which is often not
very desirable from an analytical point of view, and does not account for
inherent uncertainties. Thus, one rather models the position of the agent at
time τ by a stochastic differential equation (SDE) of the form

{
dXτ = ατ dτ + ν dBτ for τ ∈ (0, T ),

X0 = x.
(14.6)

Here, ν > 0, and {Bτ}τ>0 is the standard d-dimensional Brownian motion.
The equation (14.6) is interpreted in the sense of the Duhamel formula. The
minimization of the cost functional then reads

inf
α

E
(
φ(XT ,m(T )) +

∫ T

t

(
f0(Xτ , ατ ) + f1(Xτ ,m(τ))

)
dτ

)
,

where f0, f1 and φ are given. Note that the evolution of the measure m(t)
enters as a parameter. One solves this minimization problem by taking a
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Hamilton-Jacobi approach, and defines the value function

u(t, x) = inf
α

E
(
φ(XT ,m(T )) +

∫ T

t

(
f0(Xτ , ατ ) + f1(Xτ ,m(τ))

)
dτ

)
,

where α is an admissible control such that X solves (14.6). It can then be
shown that u(t, x) solves the first equation in (14.5), where

H(x, p) = sup
q

(
−q · p− f0(x, q)

)
.

Moreover, given the value function u, it is known that the agent plays in
the optimal way by using the feedback control α?(t, x) = −∂pH(x,Du(t, x)).
Furthermore, if all agents have independent associated noises and follow the
same strategy as above, the law of large numbers (applied to the number
of agents) leads one to deduce that the density m of the agents satisfies the
second equation in (14.5). This leads one to the prefix ”mean-field”. The
game-theoretical interpretation comes from seeing (14.5) as a description of
a Nash equilibrium (see (Lasry and Lions 2007), (Cardaliaguet 2010) for
details).

Given the above derivation of (14.5), one sees the backward HJB equation
as representing the agents’ decisions based on where they want to be in the
future, while the forward Fokker-Planck equation as representing where they
actually end up, based on their initial distribution. Solving this coupled sys-
tem of equations, one evolving backwards in time, and one evolving forwards
in time, is highly non-trivial, and in some cases existence or uniqueness, or
both, break down.

In fact, one notes a striking similarity to optimality systems we encoun-
tered in previous discussions on optimal control for nonlinear PDEs. It is this
similarity that leads to a connection with the turnpike property, when study-
ing the asymptotics of solutions to (14.5). The MFG theory can actually be
seen as a catalyst in the turnpike one. Indeed, works on a double-arc ex-
ponential estimate for (14.5) (e.g., (Cardaliaguet et al. 2012), (Cardaliaguet
et al. 2013), and also more recently (Cardaliaguet and Porretta 2019),
(Cardaliaguet and Porretta 2020)) precede and have motivated those on the
turnpike property (first appearing in (Porretta and Zuazua 2013)). Regard-
ing this exponential estimate, in the recent paper (Cirant and Porretta 2021)
for instance, the authors roughly show under the assumption that the Hamil-
tonian H(x, p) is C2 and locally Lipschitz with respect to p, and locally con-
vex with respect to p, with f0(x, α), f1(α,m) also satisfying Lipschitz as-
sumptions, and being locally bounded, then any classical solution (uT ,mT )
to (14.5) satisfies

‖mT (t)−m‖L∞(Td) + ‖DuT (t)−Du‖L∞(Td) 6 C
(
e−ωt + e−ω(T−t)

)

for all t ∈ (1, T −1) and for some C,ω > 0 independent of T , where (u,m, λ)
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is the unique solution to




λ− ν∆u+ H(x,Du) = f1(x,m) on Td,
−ν∆m−∇ · (m∂pH(x,Du)) = 0 on Td,∫

Td
m = 1,

∫

Td
u = 0.

(14.7)

This is an exponential turnpike-like property. Indeed, one sees system (14.7)
as similar to the steady optimality system in turnpike theory. Moreover, one
can also readily connect the convergence of the value function u to the corre-
sponding steady problem to the behavior observed in the HJB asymptotics
via turnpike.

PART FOUR

Epilogue

Summarizing, the turnpike property occurs naturally and generically among
a variety of optimization problems encountered in applications of different
nature. These range from shape design in aerodynamics, to stability esti-
mates for residual neural networks in machine learning. This being said, the
full mathematical theory of turnpike is far from mature – non LQ problems,
or bilinear control systems, could give rise to all kinds of different turnpike-
like patterns, among other open problems. As a matter of fact, even a precise
mathematical definition of what the turnpike may be, a priori, for a general
optimal control problem, is still not completely clear. Our goal, through
this article, was to illustrate the cases where the picture is (relatively) clear,
and those where further analysis is needed.

We saw that, for LQ problems – the staple of contemporary optimal con-
trol theory – turnpike holds whenever the cost functional is sufficiently coer-
cive with respect to the state and control, and under natural stabilizability
assumptions on the underlying ODE or PDE dynamics. The turnpike prop-
erty may then be characterized by a spectrum of different definitions, ranging
from integral or cardinal turnpike, to measure turnpike, all the way to the
exponential, double arc characterization, which was the major theme of this
work.

As is natural in many problems in analysis, a local theory can then be
developed for nonlinear problems – nonlinear here implies that the under-
lying set wherein one optimizes, is not a linear space. The latter could be
due, for instance, typically, to nonlinear underlying dynamics, but also to
presence of specific nonlinear constraints on the control and/or state. In the
context of nonlinear dynamics, the linearization strategy comes along with
smallness assumptions, in particular on the running target the trajectory
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seeks to match over time. Said smallness assumptions, which appear to be
of a technical nature, when removed, raise the critical issue of characterizing
the actual turnpike. Similar issues are raised when one forays away from
the setting of quadratic functionals, in which, while the turnpike property
can be seen to hold numerically (as seen, for instance, in the context of
deep learning), a full picture of the underlying arguments is lacking. These
considerations lead us to the following open problems.

15. Open problems

15.1. Alternative proofs in the LQ setting

We have discussed, in depth, two strategies (which rely on very similar ideas,
namely using a ”corrected Riccati” feedback to decouple the optimality sys-
tem) for proving the exponential turnpike property for LQ problems in the
infinite-dimensional setting. We believe however, that there ought to be
different ways to prove this result.

• A first direction could be to cleanse the picture regarding scaling and
singular perturbation ideas, somewhat inspired from boundary layer
theory in fluid mechanics. To be more specific, consider for instance
the optimal control problem

inf
u

y solves (15.2)

1

T

∫ T

0
‖y(t)− yd‖2H dt+

1

T

∫ T

0
‖u(t)‖2U dt (15.1)

where {
∂ty = Ay +Bu in (0, T ),

y|t=0
= y0.

(15.2)

Setting s = t
T and ε = 1

T , problem (15.1) readily rewrites as

inf
u

y solves (15.4)

∫ 1

0
‖y(s)− yd‖2H ds+

∫ 1

0
‖u(s)‖2U ds (15.3)

where {
ε∂sy = Ay +Bu in (0, 1),

y|s=0 = y0.
(15.4)

One sees that when T → +∞ then ε → 0, and can, heuristically,
stipulate some convergence of (15.3) to the steady problem

inf
(u,y)

Ay+Bu=0

‖y − yd‖2H + ‖u‖2U .

We are not aware if this direction has been fully developed in the ex-
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isting literature, and we believe that doing so would be of paramount
importance.

• On another hand, we had also discussed the so-called dissipativity strat-
egy in the sense of Willems, which in the PDE context is only known
to guarantee the weak, measure-turnpike property. We believe that
a transparent study of whether dissipativity theory (which, as said in
what precedes, is an open loop extension of the Lyapunov method)
can be used to recover the results obtained by the Riccati-inspired ap-
proaches, is warranted.

15.2. Non-uniqueness and the turnpike set

A major theme in this paper was the possibility of non-uniqueness of turn-
pikes for quadratic optimal control problems with underlying nonlinear PDE
dynamics, whenever the running targets are large. The canonical example
of this artifact is the cubic heat equation. We also saw that the definition of
the turnpike property depends on whether the target is time-dependent or
not (and not just on its smallness), as periodic turnpike may occur when-
ever the target is time-dependent and periodic. It is thus rather necessary to
provide a more general yet tractable characterization of the turnpike prop-
erty, which would account for such scenarios. Such a characterization might
naturally and probably come by making use of the value function for the
infinite time horizon problem. This idea was already raised in (Trélat and
Zhang 2018).

• Focusing on the setting where non-uniqueness arises, further clarity and
theoretical underpinning is needed to characterize which one among the
global minimizers is the actual turnpike. We have a turnpike set

T ⊂H ×U ;

as before, H is the state space, and U is the control space. Given some
solution (yT , pT ) of the transient optimality system under consideration
(since, naturally, we cannot guarantee or expect uniqueness for the
transient system, if it breaks down in the steady one), one would then
characterize the turnpike property by an estimate such as

dist
((
yT (t), pT (t)

)
,T
)
6 C

(
e−λt + e−λ(T−t)

)

for all t ∈ [0, T ]. This would then mean that there exists some point
(y, p) ∈ T to which (yT (t), pT (t)) is ”near” in the sense of the above
estimate. But characterizing said point remains an open problem.

• In (Trélat 2020), numerical examples show the competition of two
global turnpikes. The author mentions that the turnpike is determined
by measuring its proximity to the terminal conditions. If one looks at
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Figure 9.9, where two global minimizers for the cubic Poisson optimal
control problem are shown, then one would look to see which of the
two wells is the basin of attraction, and could do so by (numerically)
computing the spectrum of the Hamiltonian matrix for the optimality
system linearized around the minimizer within said well. A full picture
of this artifact remains an open problem.

15.3. Large targets for the semilinear heat equation

Much in line with the above subject, new ideas and techniques are also re-
quired for proving a turnpike property for semilinear heat equations when-
ever the target yd is arbitrarily large. This is due to a lack of complete
understanding of the linearized optimality system.

To fix ideas, we consider the case of the cubic nonlinearity: f(y) = y3.
This is clearly a dissipative system. The optimality system, when linearized
and considered in perturbation variables, reads

{
∂tζ −∆ζ + 3y2ζ = ϕ1ω in (0, T )× Ω,

∂tϕ+ ∆ϕ− 3y2ϕ = (1− 6yp)ζ in (0, T )× Ω.

As pointed out in Section 8, a key point is to check the validity of the
turnpike property for the linearized optimality system just above. This is
complicated because of the term 1 − 6y(x)p(x), whose sign is difficult to
determine for general large targets. Furthermore, due to non-uniqueness
of steady minima, it is not evident which one among the multiple global
minimizers would designate the turnpike.

15.4. Non-quadratic functionals

Another recurrent theme in this work was the setting of quadratic cost func-
tionals. While this setting is quite flexible and covers many problems arising
in applications, they come along with a certain smoothness, seen notably
on the level of the optimality system. But in fact, the turnpike property (in
some form or another) has been shown to hold for other cost functionals as
well. For instance, (Gugat and Hante 2019) penalize the TV–norm (in time)
of the control and obtain an integral turnpike property for linear, first-order
hyperbolic systems. In (Esteve-Yagüe and Geshkovski 2021), a polynomial
turnpike property is obtained for the optimal controls for finite-dimensional
driftless nonlinear systems, when the L1–norm (in time) of the control is pe-
nalized, and a rather general cost is used for the state. And more specifically,
when the L1–norm (in time) of the discrepancy of the state to the running
target is penalized, the authors in (Gugat, Schuster and Zuazua 2021) show,
for finite-dimensional systems, that a finite-time turnpike property occurs
for the state, namely, the L1 norm is saturated and the state reaches the
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turnpike exactly in finite time. Even more surprisingly, an integral turn-
pike property is obtained in (Mazari and Ruiz-Balet 2020) for a functional
without a tracking term in the state, but, albeit, with mass and pointwise
positivity and boundedness constraints on the control (implying those for
the state, by the parabolic maximum principle). The authors work with a
specific bilinear control problem for the heat equation, and show that the
turnpike limit (for optimal controls) is a design which minimizes the first
eigenvalue of the Laplacian. These works illustrate a ”universality” of the
turnpike property, but a general theory encompassing these cases, much akin
to the quadratic case, is not present in the literature to our knowledge.

15.5. Turnpike with constraints

We had considered optimal control problems without any constraints on the
admissible pair as to be in line with the setting of the exponential turn-
pike property, for which, to our knowledge, results are only known in the
unconstrained case. Already in the setting of linear systems ẏ = Ay + Bu,
the presence of constraints renders the optimality system derived from the
Pontryagin maximum principle significantly more compound, and detecting
hyperbolicity patterns of the optimality system may be very challenging.
For instance, a constraint of the form u(t) > 0 on the control may promote
chattering phenomena – an infinite number of control switchings over a com-
pact time interval. This is somewhat transparent when looking at the form
of the optimal control uT :

uT (t) ≡ max{0, B∗pT (t)}.
It is not obvious whether the Riccati-inspired strategies can be readily ex-
tended to this context; now, the control is not given linearly in terms of the
adjoint state pT .

Although the controllability theory under constraints on the state and/or
control for linear and semilinear PDEs is now rather well established ((Lohéac,
Trélat and Zuazua 2017), (Pighin and Zuazua 2018), (Hegoburu, Magal and
Tucsnak 2018), (Pighin and Zuazua 2019), (Pouchol, Trélat and Zuazua
2019), (Maity, Tucsnak and Zuazua 2019), (Le Balc’h 2020), (Ruiz-Balet and
Zuazua 2020), (Lissy and Moreau 2020), (Mazari, Ruiz-Balet and Zuazua
2020)), the validity and proof of the exponential turnpike property in such
cases is a challenging open problem.

15.6. Using HJB asymptotics

We saw, following (Esteve-Yagüe et al. 2020b), that the turnpike property
for LQ problems provides a rather clear picture of the asymptotics of the
value function solving the associated HJB equation. What we are rather
asking here, is to see as to how different properties of the HJB equation,
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under more general assumptions on the Hamiltonian, would translate to
turnpike properties for different optimal control problems. To our knowl-
edge, the literature on this issue is rather scarce. The HJB interpretation of
optimal control is clear in the setting of finite-dimensional problems. But it
is not clear, to our knowledge, how one provides a transparent formulation
of the Hamilton-Jacobi-Bellman equations for optimal control problems gov-
erned by PDEs. The derivation of the master equation in mean field games
could lead to some pointers regarding this issue. Related to this, a stronger
link between turnpike and the notion of ergodicity in optimal control and
differential game theory, as studied in (Quincampoix and Renault 2011),
(Buckdahn, Quincampoix and Renault 2015), (Renault and Venel 2017),
also warrants further development. We refer to (Backhoff, Conforti, Gentil
and Léonard 2020) for a related study in this direction.

15.7. Decay rates for nonlinear problems

When one proceeds in proving turnpike by linearizing the optimality sys-
tem, the explicit decay rate λ, given by the spectral abscissa of the operator
−A + BB∗E∞, may be lost. It would be of interest to have a clear under-
standing of the interplay between the linear turnpike decay rate, the size of
the initial data (if any), and the running target, in the nonlinear turnpike
context. It could be said that the current results are not completely trans-
parent regarding this issue, which is much clearer in the context of (feed-
back) stabilization of nonlinear systems. Such considerations could first be
addressed for systems which have a convenient variational structure (e.g.,
power-type nonlinearities), where the decay rates are more transparent in
the stabilization context.

15.8. Turnpike and optimal shape design

The proof of an exponential turnpike property for optimal shape design prob-
lems such as those discussed in Section 7 remains completely open (even in
the case of the heat equation, let alone that of the Navier-Stokes equations).
Looking beyond, there are many other problems in the interface of shape
optimization and turnpike that warrant further study. For instance, it would
be of interest to have a complete picture of the asymptotic behavior of op-
timal shapes for actuators, minimizing the controllability cost for partial
differential equations. The problem of characterizing such optimal shapes
for linear PDEs has been partially resolved, namely by making use of a ran-
domization procedure (see (Privat, Trélat and Zuazua 2015), (Privat, Trélat
and Zuazua 2016) and the references therein). In the finite dimensional
context, the optimal actuator shape may happen to be time-independent
((Geshkovski and Zuazua 2021)). But a full picture in the PDE setting is
lacking.
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15.9. Beyond supervised learning

The turnpike property, and insights stemming from the theory surround-
ing it, could have further applications beyond those discussed in preced-
ing sections. The field of reinforcement learning in particular is known to
have strong connections and to classical optimal control and HJB equations
((Recht 2019), (Bertsekas 2019), (Bertsekas 2021)). In reinforcement learn-
ing, one sometimes (but not always) works in a model-free scenario, namely,
the model on its own is not known, and is typically replaced by a Markov
decision process. In a simpler setting, one could assume an LQ structure
for a canonical system form ẏ = Ay + Bu, and assume that A and B are
unknown, but can be estimated from data with high probability using some
contemporary method (see e.g., (Dean, Mania, Matni, Recht and Tu 2020)).
In such cases, the turnpike property would apply to the estimated system.
But what happens in the general case is not clear. Perhaps the turnpike
property can again be used as a blueprint in view of avoiding discovering
using full time-series data for learning the unknown dynamics. At any rate,
an in-depth study in this direction is warranted.

Acknowledgments

We warmly thank all the people who have contributed to the improvement
of this manuscript through careful reading, comments, discussions and so
forth. We in particular thank Emmanuel Trélat, Martin Lazar, Daniel Veld-
man, Sergi Andreu, Manuel Schaller, Carlos Esteve-Yagüe, and Charlotte
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R. Dáger and E. Zuazua (2006), Wave propagation, observation and control in 1-d
flexible multi-structures, Vol. 50, Springer Science & Business Media.
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wards velocity turnpikes in optimal control of mechanical systems’, IFAC-
PapersOnLine 52(16), 490–495.

T. Faulwasser, K. Flaßkamp, S. Ober-Blöbaum and K. Worthmann (2021a), ‘A
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L. Grüne and J. Pannek (2017), Nonlinear model predictive control, in Nonlinear
model predictive control, Springer, pp. 45–69.
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J. Lohéac, E. Trélat and E. Zuazua (2017), ‘Minimal controllability time for the heat
equation under unilateral state or control constraints’, Mathematical Models
and Methods in Applied Sciences 27(09), 1587–1644.

H. Lou and W. Wang (2019), ‘Turnpike properties of optimal relaxed control prob-
lems’, ESAIM: Control, Optimisation and Calculus of Variations 25, 74.
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Y. Privat, E. Trélat and E. Zuazua (2016), ‘Optimal observability of the multi-
dimensional wave and Schrödinger equations in quantum ergodic domains’,
Journal of the European Mathematical Society 18(5), 1043–1111.

M. Quincampoix and J. Renault (2011), ‘On the existence of a limit value in some
nonexpansive optimal control problems’, SIAM Journal on Control and Op-
timization 49(5), 2118–2132.



136 Acta Numerica

F. P. Ramsey (1928), ‘A mathematical theory of saving’, The economic journal
38(152), 543–559.

A. Rapaport and P. Cartigny (2004), ‘Turnpike theorems by a value func-
tion approach’, ESAIM: Control, Optimisation and Calculus of Variations
10(1), 123–141.

B. Recht (2019), ‘A tour of reinforcement learning: The view from continuous con-
trol’, Annual Review of Control, Robotics, and Autonomous Systems 2, 253–
279.

J. Renault and X. Venel (2017), ‘Long-term values in markov decision processes
and repeated games, and a new distance for probability spaces’, Mathematics
of Operations Research 42(2), 349–376.

S. Rosset, J. Zhu and T. Hastie (2004), ‘Boosting as a regularized path to a max-
imum margin classifier’, The Journal of Machine Learning Research 5, 941–
973.

D. Ruiz-Balet, E. Affili and E. Zuazua (2021), ‘Interpolation and approximation
via Momentum ResNets and Neural ODEs’, arXiv preprint arXiv:2110.08761.

D. Ruiz-Balet and E. Zuazua (2020), ‘Control under constraints for multi-
dimensional reaction-diffusion monostable and bistable equations’, Journal
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