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Abstract. Transformers play a central role in the inner workings of large
language models. We develop a mathematical framework for analyzing Trans-
formers based on their interpretation as interacting particle systems, which
reveals that clusters emerge in long time. Our study explores the underlying
theory and offers new perspectives for mathematicians as well as computer
scientists.
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1. Outline

The introduction of Transformers in 2017 by Vaswani et al. [VSP`17] marked
a significant milestone in development of neural network architectures. Central to
this contribution is self-attention, a novel mechanism which distinguishes Trans-
formers from traditional architectures, and which plays a substantial role in their
superior practical performance. In fact, this innovation has been a key catalyst
for the progress of artificial intelligence in areas such as computer vision and nat-
ural language processing, notably with the emergence of large language models.
As a result, understanding the mechanisms by which Transformers, and especially
self-attention, process data is a crucial yet largely uncharted research area.

A common characteristic of deep neural networks (DNNs) is their compositional
nature: data is processed sequentially, layer by layer, resulting in a discrete-time
dynamical system (we refer the reader to the textbook [GBC16] for a general intro-
duction). This perspective has been successfully employed to model residual neural
networks—see Section 2.1 for more details—as continuous-time dynamical systems
called neural ordinary differential equations (neural ODEs) [CRBD18, E17, HR17].
In this context, an input xp0q P Rd, say an image, is evolving according to a given
time-varying velocity field as 9xptq “ vtpxptqq over some time interval p0, T q. As
such, a DNN can be seen as a flow map xp0q ÞÑ xpT q from Rd to Rd. Even within
the restricted class of velocity fields tvtutě0 imposed by classical DNN architectures,
such flow maps enjoy strong approximation properties as exemplified by a long line
of work on these questions [LJ18, ZGUA20, LLS22, TG22, RBZ23, CLLS23].

Following [SABP22] and [VBC20], we observe that Transformers are in fact flow
maps on PpRdq, the space of probability measures over Rd. To realize this flow map
from measures to measures, Transformers evolve a mean-field interacting particle
system. More specifically, every particle (called a token in this context) follows
the flow of a vector field which depends on the empirical measure of all particles.
In turn, the continuity equation governs the evolution of the empirical measure
of particles, whose long-time behavior is of crucial interest. In this regard, our
main observation is that particles tend to cluster under these dynamics. This phe-
nomenon is of particular relevance in learning tasks such as next-token prediction,
wherein one seeks to map a given input sequence (i.e., a sentence) of n tokens (i.e.,
words) onto a given next token. In this case, the output measure encodes the prob-
ability distribution of the next token, and its clustering indicates a small number
of possible outcomes. Our results indicate that the limiting distribution is actually
a point mass, leaving no room for diversity or randomness, which is at odds with
practical observations. This apparent paradox is resolved by the existence of a
long-time metastable state. As can be seen from Figures 2 and 4, the Transformer
flow appears to possess two different time-scales: in a first phase, tokens quickly
form a few clusters, while in a second (much slower) phase, through the process of
pairwise merging of clusters, all tokens finally collapse to a single point.

The goal of this manuscript is twofold. On the one hand, we aim to provide
a general and accessible framework to study Transformers from a mathematical
perspective. In particular, the structure of these interacting particle systems allows
one to draw concrete connections to established topics in mathematics, including
nonlinear transport equations, Wasserstein gradient flows, collective behavior mod-
els, and optimal configurations of points on spheres, among others. On the other
hand, we describe several promising research directions with a particular focus on
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the long-time clustering phenomenon. The main results we present are new, and we
also provide what we believe are interesting open problems throughout the paper.

The rest of the paper is arranged in three parts.

Part 1: Modeling. We define an idealized model of the Transformer architecture
that consists in viewing the discrete layer indices as a continuous time variable.
This abstraction is not new and parallels the one employed in classical architec-
tures such as ResNets [CRBD18, E17, HR17]. Our model focuses exclusively on
two key components of the Transformers architecture: self-attention and layer-
normalization. Layer-normalization effectively constrains particles to evolve on the
unit sphere Sd´1, whereas self-attention is the particular nonlinear coupling of the
particles done through the empirical measure. (Section 2). In turn, the empirical
measure evolves according to the continuity partial differential equation (Section 3).
We also introduce a simpler surrogate model for self-attention which has the conve-
nient property of being a Wasserstein gradient flow [AGS05] for an energy functional
that is well-studied in the context of optimal configurations of points on the sphere.

Part 2: Clustering. In this part we establish new mathematical results that indicate
clustering of tokens in the large time limit. Our main result, Theorem 4.1, indicates
that in high dimension d ě n, a set of n particles randomly initialized on Sd´1 will
cluster to a single point as t Ñ `8. We complement this result with a precise
characterization of the rate of contraction of particles into a cluster. Namely, we
describe the histogram of all inter-particle distances, and the time at which all
particles are already nearly clustered (Section 4). We also obtain a clustering
result without assuming that the dimension d is large, in another asymptotic regime
(Section 5).

Part 3: Further questions. We propose potential avenues for future research, largely
in the form of open questions substantiated by numerical observations. We first
focus on the case d “ 2 (Section 6) and elicit a link to Kuramoto oscillators. We
briefly show in Section 8.1 how a simple and natural modification of our model
leads to non-trivial questions related to optimal configurations on the sphere. The
remaining sections explore interacting particle systems that allow for parameter
tuning of the Transformers architectures, a key feature of practical implementations.

Part 1. Modeling

We begin our discussion by presenting the mathematical model for a Transformer
(Section 2). We focus on a slightly simplified version that includes the self-attention
mechanism as well as layer normalization, but excludes additional feed-forward
layers commonly used in practice; see Section 2.3.2. This leads to a highly nonlinear
mean-field interacting particle system. In turn, this system implements, via the
continuity equation, a flow map from initial to terminal distributions of particles
that we present in Section 3.

2. Interacting particle system

Before writing down the Transformer model, we first provide a brief preliminary
discussion to clarify our methodological choice of treating the discrete layer indices
in the model as a continuous time variable in Section 2.1, echoing previous work on
ResNets. The specifics of the Transformer model are presented in Section 2.2.
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2.1. Residual neural networks. One of the standard paradigms in machine
learning is that of supervised learning, where one aims to approximate an unknown
function f : Rd Ñ Rm, from data, D “ txpiq, fpxpiqquiPrNs say. This is typically
done by choosing one among an arsenal of possible parametric models, whose pa-
rameters are then fit to the data by means of minimizing some user-specified cost.
With the advent of graphical processing units (GPUs) in the realm of computer
vision [KSH12], large neural networks have become computationally accessible, re-
sulting in their popularity as one such parametric model.

Within the class of neural networks, residual neural networks (ResNets for short)
have become a staple DNN architecture since their introduction in [HZRS16]. In
their most basic form, ResNets approximate a function f at x P Rd through a
sequence of affine transformations, a component-wise nonlinearity, and skip con-
nections. Put in formulae,

(2.1)

#

xpk ` 1q “ xpkq ` wpkqσpapkqxpkq ` bpkqq for k P t0, . . . , L´ 1u

xp0q “ x .

Here σ is a Lipschitz function applied component-wise to the input vector, while
θp¨q “ pwp¨q, ap¨q, bp¨qq P Rdˆd ˆ Rdˆd ˆ Rd are trainable parameters. We say
that (2.1) has L ě 1 hidden layers (or L ` 1 layers, or is of depth L). The output
of the ResNet given the i-th input, namely xipLq P Rd, is projected to Rm via a
trained transformation as to match the label fpxpiqq according to the user-specified
objective. One can also devise generalizations of (2.1), for instance in which matrix-
vector multiplications are replaced by discrete convolutions. The key element that
all these models share is that they all have skip-connections, namely, the previous
step xipkq appears explicitly in the iteration for the next one.

One upside of (2.1), which is the one of interest to our narrative, is that the layer
index k can naturally be interpreted as a time variable, motivating the continuous-
time analogue

(2.2)

#

9xptq “ wptqσpaptqxptq ` bptqq for t P p0, T q

xp0q “ x.

These are dubbed neural ordinary differential equations (neural ODEs). Since their
introduction in [CRBD18, E17, HR17], neural ODEs have emerged as a flexible
mathematical framework to implement and study ResNets.

2.2. The interacting particle system. Unlike ResNets, which operate on a sin-
gle input vector xp0q P Rd at a time, Transformers operate on a sequence of vectors
of length n, namely, pxip0qqiPrns P pRdqn. This perspective is rooted in natural lan-
guage processing, where each vector represents a word, and the entire sequence a
sentence or a paragraph. In particular, it allows to process words together with their
context. A sequence element xip0q P Rd is called a token, and the entire sequence
pxip0qqiPrns a prompt. We use the words “token” and “particle” interchangeably.

Practical implementations make use of layer normalization [BKH16], which
amounts to an element-wise standardization of every particle at every layer. This
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effectively constrains particles to evolve on a time-varying axis-aligned ellipsoid,
that we take to be the unit sphere Sd´1 in the rest of this paper.1

A Transformer is then a flow map on pSd´1qn: the input sequence pxip0qqiPrns P

pSd´1qn is an initial condition which is evolved through the dynamics

(2.3) 9xiptq “ Pxiptq

˜

1

Zβ,iptq

n
ÿ

j“1

eβxQptqxiptq,KptqxjptqyV ptqxjptq

¸

for all i P rns and t ě 0. Here and henceforth

Pxy “ y ´ xx, yyx

denotes the projection of y P Sd´1 onto TxSd´1. The partition function Zβ,iptq ą 0
reads

(2.4) Zβ,iptq “

n
ÿ

k“1

eβxQptqxiptq,Kptqxkptqy.

where pQp¨q,Kp¨q, V p¨qq (standing for Query, Key, and Value) are parameter ma-
trices learned from data, and β ą 0 a fixed number intrinsic to the model2, which,
can be seen as an inverse temperature using terminology from statistical physics.
Note that Qp¨q,Kp¨q need not be square.

The interacting particle system (2.3)–(2.4), a simplified version of which was
first written down in [LLH`20, DGCC21, SABP22], importantly contains the true
novelty that Transformers carry with regard to other models: the self-attention
mechanism

(2.5) Aijptq :“
exQptqxiptq,Kptqxjptqy

Zβ,iptq
, pi, jq P rns2,

which is the nonlinear coupling mechanism in the interacting particle system. The
nˆn stochastic matrix Aptq (rows are probability vectors) called the self-attention
matrix. The wording attention stems from the fact that Aijptq captures the atten-
tion given by particle i to particle j relatively to all particles ℓ P rns. In particular,
a particle pays attention to its neighbors where neighborhoods are dictated by
the matrices Qptq and Kptq in (2.5). It has been observed numerically that the
probability vectors pAijp¨qqjPrns (i P rns) in a trained self-attention matrix exhibit
behavior related to the syntactic and semantic structure of sentences in natural lan-
guage processing tasks (see [VSP`17, Figures 3-5]). To illustrate our conclusions as
pedagogically as possible, throughout the paper we focus on a simplified scenario
wherein the parameter matrices pQ,K, V q are constant, and even all equal to the
identity unless stated otherwise, resulting in the dynamics

(SA) 9xiptq “ Pxiptq

˜

1

Zβ,iptq

n
ÿ

j“1

eβxxiptq,xjptqyxjptq

¸

1Layer normalization originally consisted in an entry-wise standardization of every token and
a skew via a trained matrix at every layer, leading to said axis-aligned ellipsoid. However,
different practical implementations use different but related variants, all with the goal of en-
suring that tokens don’t diverge as to avoid rounding errors. Considering the unit sphere is
thus a reasonable and natural modeling choice. This is even verified empirically in the pre-
trained ALBERT XLarge v2 model described in Figure 1, and used explicitly in Mistral AI’s model
(https://github.com/mistralai/mistral-src/tree/main).

2In practical implementations the inner products are multiplied by d´ 1
2 , which along with the

typical magnitude of Q,K leads to the appearance of β.

https://github.com/mistralai/mistral-src/tree/main
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for i P rns and t ě 0 and, as before

(2.6) Zβ,iptq “

n
ÿ

k“1

eβxxiptq,xkptqy.

The dynamics (SA) have a strong resemblance to the vast literature on nonlinear
systems arising in the modeling of collective behavior. In addition to the connection
to the classical Kuramoto model describing synchronization of oscillators [Kur75,
ABV`05] (made evident in Section 6.2), Transformers are perhaps most similar to
the Krause model [Kra00]

9xiptq “

n
ÿ

j“1

aijpxjptq ´ xiptqq, aij “
ϕp}xi ´ xj}2q

řn
k“1 ϕp}xi ´ xk}2q

.

which is non-symmetric in general (aij ‰ aji), much like (2.3). When ϕ is compactly
supported, it has been shown in [JM14] that the particles xiptq assemble in several
clusters as t Ñ `8. Other related models include those of Vicsek [VCBJ`95],
Hegselmann-Krause [HK02] and Cucker-Smale [CS07]. All these models exhibit a
clustering behavior under various assumptions (see [MT14, Tad23] and the refer-
ences therein). Yet, none of the opinion dynamics models discussed above contain
parameters appearing nonlinearly as in (SA).

The appearance of clusters in Transformers is actually corroborated by numeri-
cal experiments with pre-trained models (see Figure 1). While we focus on a much
simplified model, numerical evidence shows that the clustering phenomenon looks
qualitatively the same in the cases Q “ K “ V “ Id and generic random pQ,K, V q

(see Figures 2 and 4 for instance). We defer the interested reader directly to Sec-
tion 4; here, we continue the presentation on the modeling of different mechanisms
appearing in the Transformer architecture.

Remark 2.1 (Permutation equivariance). A function f : pSd´1qn Ñ pSd´1qn is
permutation equivariant if fpπXq “ πpf1pXq, . . . , fnpXqq for any X P pRdqn and
for any permutation π P Sn of n elements. Otherwise put, if we permute the
input X, then the output fpXq is permuted in the same way. Given t ą 0, the
Transformer (SA), mapping pxip0qqiPrns ÞÑ pxiptqqiPrns, is permutation-equivariant
on pSd´1qn.

2.3. Toward the complete Transformer. There are a couple of additional mech-
anisms used in practical implementations that we do not explicitly address or use
in this study. The mathematical analysis of these mechanisms remains open.

2.3.1. Multi-headed attention. Practical implementations spread out the computa-
tion of the self-attention mechanism at every t through a sequence of heads, leading
to the so-called multi-headed self attention. This consists in considering the follow-
ing modification to (SA):

(2.7) 9xiptq “ Pxiptq

˜

H
ÿ

h“1

n
ÿ

j“1

eβxQhxiptq,Khxjptqy

Zβ,i,hptq
Vhxjptq

¸

3ALBERT XLarge v2 contains all the mechanisms described in this text, namely, is a system
of the form (2.8) with 12 or 24 layers. The sequence length n is of the order of 512 or 1024,
and the tokens evolve in R4096. The dynamics are therefore high-dimensional, lending weight to
assumptions made later on (Section 4).
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Figure 1. Histogram of txxiptq, xjptqyupi,jqPrns2,i‰j at different lay-
ers t in the context of the pre-trained ALBERT XLarge v2 model
([LCG`20] and https://huggingface.co/albert-xlarge-v2)3, which
has constant parameter matrices. Here we randomly selected a single
prompt, which in this context is a paragraph from a random Wikipedia
entry, and then generate the histogram of the pairwise inner products.
We see the progressive emergence of clusters all the way to the 24th
(and last) hidden layer (top), as evidenced by the growing mass at 1. If
the number of layers is increased, up to 48 say, the clustering is further
enhanced (bottom).
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where Zβ,i,hptq is defined as in (2.4) for the matrices Qh and Kh. The integer H ě 1
is called the number of heads4.

The introduction of multiple heads also allows for drawing some interesting par-
allels with the literature on feed-forward neural networks, such as ResNets (2.1).

4In practical implementations, H is a divisor of d, and the query and key matrices Qh and
Kh are d

H
ˆ d rectangular. This allows for further parallelization of computations and increased

expressiveness. For mathematical purposes, we focus on working with arbitrary integers H, and
square weight matrices Qh and Kh.

https://huggingface.co/albert-xlarge-v2
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Considerable effort has been expended to understand 2-layer neural networks with
width tending to `8; more precisely, consider (2.1) with L “ 1, w P Rdˆℓ, a P Rℓˆd,
and ℓ Ñ `8. The infinite-width limit for Transformers is in fact very natural, as
it is realized by stacking an arbitrary large number of heads: H Ñ `8. Hence, the
same questions as for 1-hidden layer neural networks may be asked: for instance,
in the vein of [Cyb89, Bar93],

Problem 1 (Approximation). Fix d, n ě 2 and consider the 1-hidden layer Trans-
former with multi-headed self attention fHθ : pSd´1qn Ñ pSd´1qn defined as

fHθ px1, . . . , xnqi “ Pxi

˜

H
ÿ

h“1

n
ÿ

j“1

eβxQhxi,Khxjy

Zβ,i,h
Vhxj

¸

,

where H ě 1 and θ “ pQh,Kh, VhqhPrHs are as for (2.7). Can one approximate,
in some appropriate topology, any continuous and permutation-equivariant function
f : pSd´1qn Ñ pSd´1qn by means of some fHθ as H Ñ `8? The same question for
the multi-headed Transformer without layer normalization: fHθ : pRdqn Ñ pRdqn

defined as

fHθ px1, . . . , xnqi “

H
ÿ

h“1

n
ÿ

j“1

eβxQhxi,Khxjy

Zβ,i,h
Vhxj ,

is also open.

See [JL23] for one result in this direction, albeit where additional feed-forward
layers are also used in a key manner. A universal approximation property of the
above kind would then motivate studying the training dynamics of infinite-width
(i.e., infinite number of heads) 1-hidden layer Transformers, similar to what has
been done for the neural network analog in recent years [CB18, MMN18, RVE22].
None of these questions has received a definitive answer for Transformers; see
[YBR`19] for related work when the depth is taken to infinity.

2.3.2. Feed-forward layers. The complete Transformer dynamics combines all of the
above mechanisms with a feed-forward layer. This amounts to considering dynamics
of the form

(2.8) 9xiptq “ Pxiptq

˜

wptqσ

˜

H
ÿ

h“1

n
ÿ

j“1

eβxQhxiptq,Khxjptqy

Zβ,i,hptq
Vhxjptq ` bptq

¸¸

,

where wptq, bptq and σ are as in (2.2). These layers are critical and drive the existing
results on approximation properties of Transformers [YBR`19]. Nevertheless, the
analysis of this model is beyond the scope of our current methods.

3. Measure to measure flow map

An important aspect of Transformers is that they are not hard-wired to take into
account the order of the input sequence, contrary to other architectures used for
natural language processing such as recurrent neural networks. In these applica-
tions, each token xip0q P Rd contains not only a word embedding wi P Rd, but also
an additional positional encoding (we postpone a discussion to Remark 3.2) which
allows tokens to also carry their position in the input sequence. Therefore, an input
sequence is perfectly encoded as a set of tokens tx1p0q, . . . , xnp0qu, or equivalently
as the empirical measure of its constituent tokens 1

n

řn
i“1 δxip0q. Recall that the
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output of a Transformer is also a probability measure, namely 1
n

řn
i“1 δxiptq, albeit

one that captures the likelihood of the next token. As a result, one can view Trans-
formers as flow maps between probability measures5 on Sd´1. To describe this flow
map, we appeal to the continuity equation, which governs precisely the evolution of
the empirical measure of particles subject to dynamics. This perspective is already
present in [SABP22], the only modification here being that we add the projection
on the sphere arising from layer normalization.

3.1. The continuity equation. The vector field driving the evolution of a single
particle in (SA) clearly depends on all n particles. In fact, one can equivalently
rewrite the dynamics as

(3.1) 9xiptq “ X rµptqspxiptqq

for all i P rns and t ě 0, where

µpt, ¨q “
1

n

n
ÿ

i“1

δxiptqp¨q

is the empirical measure, while the vector field X rµs : Sd´1 Ñ TSd´1 reads

(3.2) X rµspxq “ Px

ˆ

1

Zβ,µpxq

ż

eβxx,yyy dµpyq

˙

with

(3.3) Zβ,µpxq “

ż

eβxx,yy dµpyq.

In other words, (SA) is a mean-field interacting particle system. The evolution of
µptq is governed by the continuity equation6

(3.4)

#

Btµ` divpX rµsµq “ 0 on Rě0 ˆ Sd´1

µ|t“0 “ µp0q on Sd´1

satisfied in the sense of distributions.

Remark 3.1. Global existence of weak, measure-valued solutions to (3.4) for arbi-
trary initial conditions µp0q P PpSd´1q follows by arguing exactly as in [GLPR23,
Lemma A.3]. Here and henceforth, PpSd´1q stands for the set of Borel probability
measures on Sd´1.

Remark 3.2. For the sake of completeness, in this brief segue we discuss a few
ways to perform positional encoding. The original one, proposed in [VSP`17],
proceeds as follows. Consider a sequence pwiqiPrns P pRdqn of word embeddings.
Then the positional encoding pi P Rd of the i-th word embedding is defined as
ppiq2k “ sinp i

M2k{d q and ppiq2k`1 “ cosp i
M2k{d q for k P rd{2 ´ 1s, and M ą 0 is a

user-defined scalar equal to 104 in [VSP`17]. The i-th token is then defined as the
addition: xip0q “ wi `pi. Subsequent works simply use either a random7 positional
encoding (i.e., pi is just some random vector) or a trained transformation. The

5See [DBPC19, VBC20, ZB21] for further related work on neural networks acting on probability
measures.

6Unless stated otherwise, ∇ and div henceforth stand for the spherical gradient and divergence
respectively, and all integrals are taken over Sd´1.

7This rationale supports the assumption that initial tokens are drawn at random, which we
make use of later on.
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addition can also be replaced with a concatenation xip0q “ rwi; pis. (See [LWLQ22,
XZ23] for details.)

Although the analysis in this paper is focused on the flow of the empirical
measure, one can also consider (3.4) for arbitrary initial probability measures
µp0q P PpSd´1q. Both views can be linked through a mean-field limit-type re-
sult, which can be shown by making use of the Lipschitz nature of the vector
field X rµs. The argument is classical and dates back at least to the work of Do-
brushin [Dob79]. Consider an initial empirical measure µnp0q “ 1

n

řn
i“1 δxip0q, and

suppose that the points xip0q are such that limnÑ`8 W1pµnp0q, µp0qq “ 0 for some
probability measure µp0q P PpSd´1q. (Here W1 denotes 1-Wasserstein distance–see
[Vil09] for definitions.) Consider the solutions µnptq and µptq to (3.4) with initial
data µnp0q and µp0q respectively. Dobrushin’s argument is then centered around
the estimate

W1pµnptq, µptqq ď eOp1qtW1pµnp0q, µp0qq

for any t P R, which in the case of (3.4) can be shown without much difficulty (see
[Vil01, Chapitre 4, Section 1] or [Gol16, Section 1.4.2]). This elementary mean-field
limit result has a couple of caveats. First, the time-dependence is exponential. Sec-
ond, if one assumes that the points xip0q are sampled i.i.d. according to µ0, then
W1pµnp0q, µp0qq converges to zero at rate n´ 1

d´1 [Dud69, BLG14], which deterio-
rates quickly when d grows. Dimension-free convergence has been established in
some cases, for instance by replacing the Wasserstein distance with a more careful
choice of metric as in [HHL23, Lac23] or more generally in [SFG`12]. Similarly,
the exponential time-dependence might also be improved, as recent works in the
context of flows governed by Riesz/Coulomb singular kernels, with diffusion, can
attest [RS23, GBM21] (see [LLF23] for a result in the smooth kernel case). We do
not address this question in further detail here. For more references on this well-
established topic, the reader is referred to [Vil01, Gol16, Ser20] and the references
therein.

3.2. The interaction energy. One can naturally ask whether the evolution in (3.4)
admits some quantities which are monotonic when evaluated along the flow. As it
turns out, the interaction energy

(3.5) Eβrµs “
1

2β

ĳ

eβxx,x1
y dµpxqdµpx1q

is one such quantity. Indeed,
d

dt
Eβrµptqs “

ĳ

β´1eβxx,x1
y dBtµpt, xqdµpt, x1q

“

ż

X rµptqspxq ¨

ż

∇
´

β´1eβxx,x1
y
¯

dµpt, x1qdµpt, xq

“

ż

›

›

›
X rµptqspxq

›

›

›

2

Zβ,µptqpxqdµpt, xq(3.6)

for any t ě 0 by using integration by parts. Recalling the definition of Zβ,µpxq

in (3.3), we see that e´β ď Zβ,µpxq ď eβ for all x P Sd´1. The identity (3.6)
therefore indicates that Eβ increases along trajectories of (3.4). (Similarly, should
V “ ´Id, the energy Eβ would decrease along trajectories.) This begs the question
of characterizing the global minima and maxima of Eβ , which is the goal of the
following result.
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Proposition 3.3. Let β ą 0 and d ě 2. The unique global minimizer of Eβ over
PpSd´1q is the uniform measure8 σd. Any global maximizer of Eβ over PpSd´1q is
a Dirac mass δx˚ centered at some point x˚ P Sd´1.

This result lends credence to our nomenclature of the case V “ Id as attractive,
and V “ ´Id as repulsive. The reader should be wary however that in this result
we are minimizing or maximizing Eβ among all probability measures on Sd´1.
Should one focus solely on discrete measures, many global minima appear–these
are discussed in Section 8.1. This is one point where the particle dynamics and
the mean-field flow deviate. We now provide a brief proof of Proposition 3.3 (see
[Tan17] for a different approach).

Proof of Proposition 3.3. The fact that any global maximizer is a Dirac mass is
easy to see. We proceed with proving the rest of the statement. Let fptq “ eβt.
The interaction energy then reads

Eβrµs “
1

2

ĳ

fpxx, x1yqdµpxqdµpx1q.

The proof relies on an ultraspherical (or Gegenbauer) polynomial expansion of fptq:

fptq “

`8
ÿ

k“0

pfpk;λq
k ` λ

λ
Cλ

k ptq

for t P r´1, 1s, where λ “ d´2
2 , Cλ

k are Gegenbauer polynomials, and

pfpk;λq “
Γpλ` 1q

Γpλ` 1
2 qΓp 1

2 q

1

Cλ
k p1q

ż 1

´1

fptqCλ
k ptqp1 ´ t2qλ´ 1

2 dt

where Cλ
k p1q ą 0 (see [DX13, Section 1.2]). According to [BD19, Proposition 2.2],

a necessary and sufficient condition for Proposition 3.3 to hold is to ensure that
pfpk;λq ą 0 for all k ě 1. To show this, we use the Rodrigues formula [Sze39, 4.1.72]

Cλ
k ptq “

p´1qk2k

k!

Γpk ` λqΓpk ` 2λq

ΓpλqΓp2k ` 2λq
p1 ´ t2q´pλ´ 1

2 q

ˆ

d

dt

˙k

p1 ´ t2qk`λ´ 1
2 ,

and the fact that Cλ
k p´tq “ p´1qkCλ

k ptq for t P r´1, 1s, which in combination with
integration by parts yield

ż 1

´1

tℓCλ
k ptqp1 ´ t2qλ´ 1

2 dt

#

ą 0 if ℓ ě k and ℓ´ k is even
“ 0 otherwise .

We conclude by using the power series expansion of f . □

3.3. A Wasserstein gradient flow proxy. In view of (3.6), one could hope to
see the continuity equation (3.4) as the Wasserstein gradient flow of Eβ , or possibly
some other functional (see the seminal papers [Ott01, JKO98], and [AGS05, Vil09]
for a complete treatment). The long time asymptotics of the PDE can then be
analyzed by studying convexity properties of the underlying functional, by analogy
with gradient flows in the Euclidean case.

8That is, the Lebesgue measure on Sd´1, normalized to be a probability measure.
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For (3.4) to be the Wasserstein gradient flow of Eβ , the vector field X rµs defined
in (3.2) ought to be the gradient of the first variation δEβ of Eβ . However, notice
that X rµs is a logarithmic derivative:

(3.7) X rµspxq “ ∇ log

ż

β´1eβxx,yy dµpyq.

(This observation goes beyond Q “ K “ Id and V “ ˘Id as long as QJK “ V ;
see [SABP22, Assumption 1].) Because of the lack of symmetry, it has been shown
in [SABP22] that (3.7) is not the gradient of the first variation of a functional.

To overcome this limitation on Rd, thus without layer normalization, [SABP22]
propose two ways to "symmetrize" (3.4) that both lead to a Wasserstein gradient
flow; see [SABP22, Proposition 2]. We focus here on the simplest one which consists
in removing the logarithm in (3.7), or equivalently to removing the denominator
in (3.2). This is one point where working on the unit sphere is useful: otherwise, the
equation on Rd without layer normalization (as considered in [SABP22]) is ill-posed
for general choices of matrices V , due to the fact that the magnitude of the vector
field X rµs grows exponentially with the size of the support of µ. On the contrary,
on Sd´1 the resulting equation is perfectly well-posed.

Remark 3.4. Considering the Transformer dynamics on Rd, thus without layer
normalization, the authors in [SABP22] propose an alternative symmetric model:
they replace the self-attention (stochastic) matrix by a doubly stochastic one, gener-
ated from the Sinkhorn iteration. This leads to a Wasserstein gradient flow, whereby
the resulting attention mechanism is implicitly expressed as a limit of Sinkhorn it-
erations. Understanding the emergence of clusters for this model is an interesting
but possibly challenging question.

In view of the above discussion, we are inclined to propose the surrogate model

(USA) 9xiptq “ Pxiptq

˜

1

n

n
ÿ

j“1

eβxxiptq,xjptqyxjptq

¸

,

which is obtained by replacing the partition function Zβ,iptq by n. As a matter of
fact, (USA) presents a remarkably similar qualitative behavior–all of the results we
show in this paper are essentially the same for both dyanmics.

The continuity equation corresponding to (USA), namely

(3.8)

$

&

%

Btµpt, xq ` div

ˆ

Px

ˆ
ż

eβxx,x1
yx1 dµpt, x1q

˙

µpt, xq

˙

“ 0

µ|t“0 “ µ0

for pt, xq P Rě0 ˆ Sd´1, can now be seen as a Wasserstein gradient flow for the
interaction energy Eβ defined in (3.5).

Lemma 3.5. Consider the interaction energy Eβ : PpSd´1q Ñ Rě0 defined in (3.5).
Then the vector field

X rµspxq “ Px

ˆ
ż

eβxx,x1
yx1 dµpx1q

˙

satisfies

(3.9) X rµspxq “ ∇δEβrµspxq

for any µ P PpSd´1q and x P Sd´1, where δEβrµs denotes the first variation of Eβ.
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We omit the proof which follows from standard Otto calculus [Vil09, Chapter 15].
We can actually write (3.9) more succinctly by recalling the definition of the con-
volution of two functions on Sd´1 [DX13, Chapter 2]: for any g P L1pSd´1q and
f : r´1, 1s Ñ R such that t ÞÑ p1 ´ t2q

d´3
2 fptq is integrable,

pf ˚ gqpxq “

ż

fpxx, yyqgpyqdσdpyq.

This definition has a natural extension to the convolution of a function f (with the
above integrability) and a measure µ P PpSd´1q. We can hence rewrite

Eβrµs “
1

2

ż

pGβ ˚ µqpxqdµpxq

where r´1, 1s Q Gβptq “ β´1eβt, and so

X rµspxq “ ∇pGβ ˚ µqpxq.

Thus, (3.8) takes the equivalent form

(3.10)

$

&

%

Btµpt, xq ` div
´

∇
`

Gβ ˚ µpt, ¨q
˘

pxqµpt, xq

¯

“ 0 for pt, xq P Rě0 ˆ Sd´1

µ|t“0 “ µ0 for x P Sd´1.

The considerations above lead us to the following Lyapunov identity.

Lemma 3.6. The solution µ P C0pRě0;PpSd´1qq to (3.8) satisfies
d

dt
Eβrµptqs “

ż

›

›

›
∇
´

Gβ ˚ µpt, ¨q
¯

pxq

›

›

›

2

dµpt, xq

for t ě 0.

Interestingly, (3.10) is an aggregation equation, versions of which have been stud-
ied in great depth in the literature. For instance, clustering in the spirit of an
asymptotic collapse to a single Dirac measure located at the center of mass of the
initial density µp0, ¨q has been shown for aggregation equations with singular ker-
nels in [BCM08, BLR11, CDF`11], motivated by the Patlak-Keller-Segel model of
chemotaxis. Here, one caveat (and subsequently, novelty) is that (3.10) is set on
Sd´1 which makes the analysis developed in these references difficult to adapt or
replicate.

Remark 3.7. Let us briefly sketch the particle version of the Wasserstein gradient
flow (3.8). When µptq “ 1

n

řn
i“1 δxiptq, the interaction energy (3.5) takes the form

EβpXq “
1

2βn2

n
ÿ

i“1

n
ÿ

j“1

eβxxi,xjy

where X “ px1, . . . , xnq P pSd´1qn. Denoting by ∇X the gradient associated to the
standard Riemannian metric on pSd´1qn, we get the dynamics

(3.11) 9Xptq “ n∇XEβpXptqq.

Indeed, the gradient on pSd´1qn is simply ∇ “ pB1, . . . , Bnq where Bi is the gradient
in Sd´1 acting on the i-th copy in pSd´1qn. Therefore

BiEβpXptqq “
1

βn2

n
ÿ

j“1

Pxiptq

´

eβxxiptq,xjptqyβxjptq
¯

“
1

n
9xiptq
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which yields (3.11).
Note that (SA) also corresponds to a gradient flow of the same interaction energy

albeit with respect to a Riemannian metric on the sphere different from the standard
one (for n “ 2 the two are conformally equivalent). We provide more detail in the
following section.

3.4. A gradient flow for a modified metric. We will now briefly demonstrate
that for a particular choice of parameters pQ,K, V q, the true dynamics (SA) can
be seen as a gradient flow for Eβ upon a modification of the metric on the tangent
space of pSd´1qn. This will facilitate qualitative analysis later on by using standard
tools from dynamical systems.

We suppose that

QJK is symmetric, V “ QJK.

We define a new metric on pSd´1qn as follows. Let X “ px1, . . . , xnq P pSd´1qn.
Consider the inner product on TXpSd´1qn given by

(3.12) xpa1, . . . , anq, pb1, . . . , bnqyX “

n
ÿ

i“1

Zβ,ipXqxai, biy ,

where ai, bi P TxiSd´1, and

Zβ,ipXq “

n
ÿ

j“1

eβxV xi,xjy.

Set

EβpXq “
1

2β

n
ÿ

i“1

n
ÿ

j“1

eβxV xi,xjy.

We now show that the dynamics (2.3) can be equivalently written as
9Xptq “ ∇EβpXptqq,

where the gradient ∇ is computed with respect to the metric (3.12) on pSd´1qn.
To this end, we ought to show that for all vector fields Y on pSd´1qn and for all
X P pSd´1qn,

(3.13)
d

dt

ˇ

ˇ

ˇ

t“0
Eβ

`

Φt
Y pXq

˘

“ xY pXq, BpXqyX

holds, where Φt
Y is the flow associated to the vector field Y , whereasB “ pB1, . . . , Bnq

with

Bi “ Pxi

˜

1

Zβ,ipXq

n
ÿ

j“1

eβxV xi,xjyV xj

¸

P Txi
Sd´1.

By linearity, it is sufficient to show (3.13) for vector fields Y of the form

Y pXq “ pAx1, 0, . . . , 0q P TXpSd´1qn

where A is an arbitrary non-zero skew-symmetric matrix. Clearly

(3.14) Φt
Y pXq “ petAx1, x2, . . . , xnq.

One first computes

d

dt

ˇ

ˇ

ˇ

t“0
Eβ

`

Φt
Y pXq

˘

“

n
ÿ

j“1

eβxV x1,xjyxAx1, V xjy.
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Now observe that xAx1, yy “ xAx1, zy for all skew-symmetric matrices A if and
only if x1pyJ ´ zJq is a symmetric matrix. Since Px1 “ Id ´ x1x

J
1 , we see that

n
ÿ

j“1

eβxV x1,xjyxAx1, V xjy “ xY pXq, BpXqyX ,

as desired.

Part 2. Clustering

As alluded to in the introductory discussion, clustering is of particular relevance
in tasks such as next-token prediction. Therein, the output measure encodes the
probability distribution of the next token, and its clustering indicates a small num-
ber of possible outcomes. In Sections 4 and 5, we show several results which indicate
that the limiting distribution is a point mass. While it may appear that this leaves
no room for diversity or randomness, which is at odds with practical observations,
these results hold for the specific choice of parameter matrices, and apply in possi-
bly very long time horizons. Numerical experiments indicate a more subtle picture
for different parameters—for instance, there is an appearance of a long metastable
phase during which the particles coalesce in a small number of clusters, which ap-
pears consistent with behavior in pre-trained models (Figure 1). We are not able
to theoretically explain this behavior as of now.

Ultimately, the appearance of clusters is somewhat natural9, since the Trans-
former dynamics are a weighted average of all particles, with the weights being
hard-wired to perform a fast selection of particles most similar to the i-th particle
being queried. This causes the emergence of leaders which attract all particles in
their vicinity. In the natural language processing interpretation, where particles
represent tokens, this further elucidates the wording attention as the mechanism of
inter-token attraction, and the amplitude of the inner product between tokens can
be seen as a measure of their semantic similarity.

4. A single cluster in high dimension

The clustering results we present in this section are restricted to the high-
dimensional regime. We cover the case of arbitrary dimension d, when β « 0,
in Section 5. Further avenues for tackling the low-dimensional case are given in
Section 6 whereas the repulsive case V “ ´Id is discussed in Section 8.1.

4.1. Clustering when d ě n. Our first result shows the emergence of a single
cluster in high dimension and reads as follows.

Theorem 4.1. Let n ě 1 and β ą 0. Suppose d ⩾ n. Consider the unique solution
pxip¨qqiPrns P C0pRě0; pSd´1qnq to the Cauchy problem for (SA) or (USA), corre-
sponding to an initial sequence of points pxip0qqiPrns P pSd´1qn distributed uniformly
at random. Then almost surely there exists x˚ P Sd´1 and constants C, λ ą 0 such
that

}xiptq ´ x˚} ď Ce´λt

holds for all i P rns and t ě 0.

9and has been observed in related computer science literature [ZKJ`21, DCL21, WZCW21],
where it is sometimes referred to as oversmoothing.



16 GESHKOVSKI, LETROUIT, POLYANSKIY, AND RIGOLLET

In fact, let Q and K be arbitrary dˆd matrices. Then the same result also holds
for the solution to the corresponding Cauchy problem for (2.3) with V “ Id (or the
natural analogue of (USA) with these parameters).

This is referred to as convergence toward consensus in collective behavior models.
When d ě n and the points pxip0qqiPrns P pSd´1qn are distributed uniformly at

random, with probability one there exists10 w P Sd´1 such that xw, xip0qy ą 0 for
any i P rns. In other words, all of the initial points lie in an open hemisphere almost
surely. The proof of Theorem 4.1 thus follows as a direct corollary of the following
result, which holds for any n ě 1 and d ě 2:

Lemma 4.2 (Cone collapse). Let β ą 0 and let pxip0qqiPrns P pSd´1qn be such
that there exists w P Sd´1 for which xxip0q, wy ą 0 for any i P rns. Consider
the unique solution pxip¨qqiPrns P C0pRě0; pSd´1qnq to the corresponding Cauchy
problem for (SA) or (USA). Then there exists x˚ P Sd´1 and constants C, λ ą 0
such that

}xiptq ´ x˚} ď Ce´λt

holds for all i P rns and t ě 0.
In fact, let Q and K be arbitrary dˆd matrices. Then the same result also holds

for the solution to the corresponding Cauchy problem for (2.3) with V “ Id (or the
natural analogue of (USA) with these parameters).

Remark 4.3. Lemma 4.2 implies that
␣

px̄iqiPrns P pSd´1qn : x̄1 “ . . . “ x̄n
(

is Lya-
punov asymptotically stable as a set. In fact, it is exponentially stable.

Lemma 4.2 is reminiscent of results on interacting particle systems on the sphere
(see [CLP15, Theorem 1] for instance), and the literature on synchronization for
the Kuramoto model on the circle ([ABK`22, Lemma 2.8], [HR20, Theorem 3.1]
and Section 6.2). We often make use of the following elementary lemma.

Lemma 4.4. Let f : Rě0 Ñ R be a differentiable function such that
ż `8

0

|fptq| dt` sup
tPRě0

ˇ

ˇ

ˇ

9fptq
ˇ

ˇ

ˇ
ă `8.

Then limtÑ`8 fptq “ 0.

The proof of Lemma 4.2 is an adaptation of [CLP15, Theorem 1]. We present it
here for completeness.

Proof of Lemma 4.2. We focus on the case (USA), and set

aijptq :“ eβxxiptq,xjptqy ą 0.

The proof for (SA) is identical, and one only needs to change the coefficients aijptq

by Zβ,iptq
´1eβxxiptq,xjptqy throughout. Also note that since we only make use of the

positivity of the coefficients ai,jptq throughout the proof, all arguments are readily
generalizable to the case of arbitrary dˆd matrices Q and K appearing in the inner
products.

10This weak version of Wendel’s theorem (Theorem 4.5) is easy to see directly.
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Step 1. Clustering. For t ě 0, consider

iptq P argmin
iPrns

xxiptq, wy.

Fix t0 ě 0. We have
ˆ

d

dt
xxipt0qp¨q, wy

˙

ˇ

ˇ

ˇ

t“t0

“

n
ÿ

j“1

aipt0qjpt0q

´

xxjpt0q, wy ´ xxipt0qpt0q, xjpt0qyxxipt0qpt0q, wy

¯

ě 0.

This implies that all points remain within the same open hemisphere at all times
and the map

t ÞÑ rptq :“ min
iPrns

xxiptq, wy

is non-decreasing on Rě0. It is also bounded from above by 1. We may thus define
r8 :“ limtÑ`8 rptq. Note that r8 ě rp0q ą 0 by assumption. By compactness,
there exist a sequence of times ttku

`8
k“1 with tk Ñ `8, and some pxiqiPrns P pSd´1qn

such that limkÑ`8 xiptkq “ xi for all i P rns. Using the definition of rptq, we also
find that

xxj , wy ě r8

for all j P rns, and by continuity, there exists i P rns such that xxi, wy “ r8. Then

lim
kÑ`8

x 9xiptkq, wy “

n
ÿ

j“1

aijpxw, xjy ´ xxi, xjyxxi, wyq ě r8

n
ÿ

j“1

aijp1 ´ xxi, xjyq,

(4.1)

where we set aij :“ eβxxi,xjy ą 0. Notice that

lim
kÑ`8

ż `8

tk

x 9xipsq, wyds “ r8 ´ lim
kÑ`8

xxiptkq, wy “ 0,

and by using the equation (USA) we also find that |x:xiptq, wy| “ Ope2βq for any
t ě 0. Therefore by Lemma 4.4, the left-hand side of (4.1) is equal to 0, and
consequently the right-hand side term as well. This implies that x1 “ . . . “ xn :“
x˚. Repeating the argument by replacing w with x˚, we see that the extraction of
a sequence ttku

`8
k“1 as above is not necessary, and therefore

(4.2) lim
tÑ`8

xiptq “ x˚

for all i P rns.

Step 2. Exponential rate. We now improve upon (4.2). Set

αptq :“ min
iPrns

xxiptq, x
˚y.

From (4.2) we gather that there exists some t0 ą 0 such that αptq ě 1
2 for all t ě t0.

Also, in view of what precedes we know that x˚ lies in the convex cone generated
by the points x1ptq, . . . , xnptq for any t ą 0. Thus, there exists some η P p0, 1s such
that ηx˚ is a convex combination of the points x1ptq, . . . , xnptq, which implies that

(4.3) x˚ “

n
ÿ

k“1

θkptqxkptq, for some
n
ÿ

k“1

θkptq ě 1, θkptq ě 0 @k P rns.



18 GESHKOVSKI, LETROUIT, POLYANSKIY, AND RIGOLLET

We find

(4.4) 9αptq “ x 9xiptqptq, x˚y ě

n
ÿ

j“1

aiptqjptqp1 ´ xxiptqptq, xjptqyqαptq

On another hand,

(4.5) min
jPrns

xxiptqptq, xjptqy ď

n
ÿ

k“1

θkptqxxiptqptq, xkptqy “ xxiptqptq, x˚y “ αptq.

Plugging (4.5) into (4.4) and using aijptq ě n´1e´2β we get

(4.6) 9αptq ě
1

2ne2β
p1 ´ αptqq

for t ě t0. Applying the Grönwall inequality we get

(4.7) 1 ´ αptq ď
1

2
e´ 1

2neβ
pt´t0q

for all t ě t0. The conclusion follows. □

In the case d ă n, we can still apply Wendel’s theorem (recalled below) together
with Lemma 4.2 to obtain clustering to a single point with probability at least pn,d
for some explicit pn,d P p0, 1q.

Theorem 4.5 (Wendel, [Wen62]). Let d, n ě 1 be such that d ď n. Let x1, . . . , xn
be n i.i.d. uniformly distributed points on Sd´1. The probability that these points
all lie in the same hemisphere is:

P
´

Dw P Sd´1 : xxi, wy ą 0 for all i P rns

¯

“ 2´pn´1q

d´1
ÿ

k“0

ˆ

n´ 1

k

˙

.

4.2. Precise quantitative convergence in high dimension. In the regime
where n is fixed and d Ñ `8, in addition to showing the formation of a clus-
ter as in Theorem 4.1, it is possible to quantitatively describe the entire evolution
of the particles with high probability. To motivate this, on the one hand we note
that since the dynamics evolve on Sd´1, inner products are representative of the dis-
tance between points, and clustering occurs if xxiptq, xjptqy Ñ 1 for any pi, jq P rns2

as t Ñ `8. On the other hand, if d " n, n points in a generic initial sequence are
almost orthogonal by concentration of measure [Ver18, Chapter 3], and we are thus
able to compare their evolution with that of an initial sequence of truly orthogonal
ones.

We begin by describing the case of exactly orthogonal initial particles, which is
particularly simple as the dynamics are described by a single parameter.

Theorem 4.6. Let β ě 0, d, n ě 2 be arbitrary. Consider an initial sequence
pxip0qqiPrns P pSd´1qn of n pairwise orthogonal points: xxip0q, xjp0qy “ 0 for i ‰ j,
and let pxip¨qqiPrns P C0pR⩾0; pSd´1qnq denote the unique solution to the correspond-
ing Cauchy problem for (SA) (resp. for (USA)). Then the angle =pxiptq, xjptqq is
the same for all distinct i, j P rns:

=pxiptq, xjptqq “ θβptq
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for t ⩾ 0 and some θβ P C0pRě0;Tq. Furthermore, for (SA), γβptq :“ cospθβptqq

satisfies
$

’

&

’

%

9γβptq “
2eβγβptqp1 ´ γβptqqppn´ 1qγβptq ` 1q

eβ ` pn´ 1qeβγβptq
for t ě 0

γβp0q “ 0 ,

(4.8)

and for (USA), we have
$

&

%

9γβptq “
2

n
eβγβptqp1 ´ γβptqqppn´ 1qγβptq ` 1q for t ě 0

γβp0q “ 0 .
(4.9)

Here and henceforth, T “ R{2πZ denotes the one-dimensional torus. We provide
a brief proof of Theorem 4.6 just below. The following result then shows that when
d " n, t ÞÑ γβptq is a valid approximation for t ÞÑ xxiptq, xjptqy for any distinct
i, j P rns.

Theorem 4.7. Fix β ⩾ 0 and n ě 2. Then there exists some d˚pn, βq ě n such
that for all d ě d˚pn, βq, the following holds. Consider a sequence pxip0qqiPrns of n
i.i.d. uniformly distributed points on Sd´1, and let pxip¨qqiPrns P C0pRě0; pSd´1qnq

denote the unique solution to the corresponding Cauchy problem for (SA). Then
there exist C “ Cpn, βq ą 0 and λ “ λpn, βq ą 0, such that with probability at least
1 ´ 2n2d´1{64,

(4.10)
ˇ

ˇ

ˇ
xxiptq, xjptqy ´ γβptq

ˇ

ˇ

ˇ
⩽ min

#

2 ¨ cpβqnt

c

log d

d
,Ce´λt

+

holds for any i ‰ j and t ě 0, where cpβq “ e10maxt1,βu, and γβ is the unique
solution to (4.8).

Since the proof is rather lengthy, we defer it to Appendix A. It relies on combining
the stability of the flow with respect to the initial data (entailed by the Lipschitz
nature of the vector field) with concentration of measure. An analogous statement
also holds for (USA), and more details can be found in Remark A.1, whereas the
explicit values of C and λ can be found in (A.15). The upper bound in (4.10) is of
interest in regimes where d and/or t are sufficiently large as the error in (4.10) is
trivially bounded by 2.

Proof of Theorem 4.6. We split the proof in two parts. We focus on proving the
result for the dynamics (SA), since the same arguments readily apply to the dy-
namics (USA).

Part 1. The angle θβptq. We first show there exists θ P C0pRě0;Tq such that
θptq “ =pxiptq, xjptqq for any distinct pi, jq P rns2 and t ě 0. Since the initial tokens
are orthogonal (and thus d ě n), we may consider an orthonormal basis pe1, . . . , edq

of Rd such that xip0q “ ei for i P rns. Let π : rds Ñ rds be a permutation. By
decomposing any x P Sd´1 in this basis, we define Pπ : Sd´1 Ñ Sd´1 as

Pπ

˜

n
ÿ

i“1

aiei

¸

“

n
ÿ

i“1

aieπpiq.

Setting yiptq “ Pπpxiptqq for i P rns, we see that yiptq solves (SA) with initial
condition yip0q “ Pπpxip0qq. But pxπp1qptq, . . . , xπpnqptqq is a solution of (SA) by
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permutation equivariance, and it has the same initial condition since Pπpxip0qq “

xπpiqp0q. Consequently, we deduce that Pπpxiptqq “ xπpiqptq for any t ě 0 and any
i P rds. Hence

xxiptq, xjptqy “ xPπpxiptqq, Pπpxjptqqy “ xxπpiqptq, xπpjqptqy

which concludes the proof.

Part 2. The curve γβptq. By virtue of the orthogonality assumption we have
γβp0q “ cospθβp0qq “ 0. To prove that γβptq satisfies (4.8) for the case of (SA),
recall that

Pxiptqpxjptqq “ xjptq ´ xxiptq, xjptqyxiptq.

Then for k ‰ i,

9γβptq “ 2x 9xiptq, xkptqy

“ 2
n
ÿ

j“1

ˆ

eβxxiptq,xjptqy

řn
ℓ“1 e

βxxiptq,xℓptqy

˙

pxxjptq, xkptqy ´ xxiptq, xjptqyxxiptq, xkptqyq .

Since the denominator in the above expression is equal to pn ´ 1qeβγβptq ` eβ , we
end up with

9γβptq “
2eβγβptq

pn´ 1qeβγβptq ` eβ

n
ÿ

j“1

´

xxjptq, xkptqy ´ xxiptq, xjptqyxxiptq, xkptqy

¯

“
2eβγβptq

pn´ 1qeβγβptq ` eβ
p1 ´ γβptq2 ` pn´ 2qpγβptq ´ γβptq2qq,

as desired. □

4.3. Metastability and a phase transition. An interesting byproduct of The-
orem 4.6 and Theorem 4.7 is the fact that they provide an accurate approximation
of the exact phase transition curve delimiting the clustering and non-clustering
regimes, in terms of t and β. To be more precise, given an initial sequence
pxip0qqiPrns P pSd´1qn of random points distributed independently according to
the uniform distribution on Sd´1, and for any fixed 0 ă δ ! 1, we define the phase
transition curve as the boundary

Γd,δ “ B

"

t, β ě 0: t “ arg inf
sě0

´

Ppxx1psq, x2psqy ě 1 ´ δq “ 1 ´ 2n2d´ 1
64

¯

*

where pxip¨qqiPrns denotes the solution to the corresponding Cauchy problem for (SA).
(Here the choice of the first two particles instead of a random distinct pair is jus-
tified due to permutation equivariance.) Theorem 4.7 then gives the intuition that
over compact subsets of pRě0q2, Γd,δ should be well-approximated by

(4.11) Γ8,δ “

!

t, β ě 0: γβptq “ 1 ´ δ
)

.

This is clearly seen in Figure 2, along with the fact that the resolution of this
approximation increases with d Ñ `8.

Figure 2 appears to contain more information than what we may gather from
Theorem 4.1, Theorem 4.6 and Theorem 4.7. In particular, for small d, we see the
appearance of a zone (white/light blue in Figure 2) of parameters pt, βq for which
the probability of particles being clustered is positive, but not close to one. A
careful inspection of this region reveals that points are grouped in a finite number
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Figure 2. Plots of the probability that randomly initialized particles
following (SA) cluster to a single point as a function of t and β: we graph
the function pt, βq ÞÑ Ppx1p0q,...,xnp0qq„σd

ptxx1ptq, x2ptqy ě 1 ´ δuq, which
is equal to pt, βq ÞÑ Ppx1p0q,...,xnp0qq„σd,i‰j fixed ptxx1ptq, x2ptqy ě 1 ´ δuq

by permutation equivariance. We compute this function by generating
the average of the histogram of txxiptq, xjptqy ě 1 ´ δ : pi, jq P rns

2, i ‰

ju over 210 different realizations of initial sequences. Here, δ “ 10´3,
n “ 32, while d varies. We see that the curve Γ8,δ defined in (4.11)
approximates the actual phase transition with increasing accuracy as d
grows, as implied by Theorem 4.7.

of clusters; see Figure 3. The presence of such a zone indicates the emergence
of a long-time metastable state where points are clustered into several groups but
eventually relax to a single cluster in long-time. This two-time-scale phenomenon
is illustrated in Figure 3 and prompts us to formulate the following question.

Problem 2. Do the dynamics enter a transient metastable state, in the sense that
for β " 1, all particles stay in the vicinity of m ă n clusters for long periods of
time, before they all collapse to the final cluster tx˚u?

There have been important steps towards a systematic theory of metastabil-
ity for gradient flows, with applications to nonlinear parabolic equations–typically
reaction-diffusion equations such as the Allen-Cahn or Cahn-Hilliard equations
[OR07, KO02]. While these tools to not readily apply to the current setup, they
form an important starting point to answer this question.

Finally, one may naturally ask whether the clustering and phase diagram conclu-
sions persist when the parameter matrices pQ,K, V q are significantly more general:
some illustrations11 are given in Figure 4.

11See github.com/borjanG/2023-transformers-rotf for additional figures which indicate that
this phenomenon appears to hold in even more generality.

https://github.com/borjanG/2023-transformers-rotf
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Figure 3. We zoom in on the phase diagram (Figure 2) for the dy-
namics on the circle: d “ 2. For β “ 4, 9, we also display a trajectory
of (SA) for a randomly drawn initial condition at times t “ 2.5, 18, 30.
We see that the particles settle at 2 clusters when β “ 4 (bottom right)
and 3 clusters when β “ 9 (top right), for a duration of time. This
reflects our metastability claim for large β in the low-dimensional case.
The regime β ! 1 (a single cluster emerges) is covered in Section 5.

Problem 3. Can the conclusions of Theorem 4.6–Theorem 4.7 be generalized to
the case of random matrices pQ,K, V q?

5. A single cluster for small β

Our first attempt to remove the assumption d " 1 consists in looking at extreme
choices of β. The case β “ `8 is of little interest since all particles are fixed by
the evolution. We therefore first focus on the case β “ 0, before moving to the case
β ! 1 by a perturbation argument. We also cover the case where β is sufficiently
large, but finite.

5.1. The case β “ 0. For β “ 0, both (SA) and (USA) read as

(5.1) 9xiptq “ Pxiptq

˜

1

n

n
ÿ

j“1

xjptq

¸

, t ⩾ 0.

The following result shows that generically over the initial points, a single cluster
emerges. It complements a known convergence result ([FL19, Theorem 2]) for (5.1).
In [FL19, Theorem 2], the authors show convergence to an antipodal configuration,
in the sense that n´ 1 particles converge to some x˚ P Sd´1, with the last particle
converging to ´x˚. Moreover, once convergence is shown to hold, it holds with
an exponential rate. Mimicking the proof strategy of [BCM15, Theorem 2.2] and
[HKR18, Theorem 3.2], we sharpen this result by showing that the appearance of
an antipodal particle is non-generic over the choice of initial conditions.
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0 5 10 15 20 25 30
t

1

2

3

4

5

6

7

8

9

0.0

0.2

0.4

0.6

0.8

1.0

QJK Wigner, V “ QJK

Figure 4. Phase diagrams (see Figure 2 for explanations) for some
choices of random matrices pQ,K, V q; here d “ 128, n “ 32. Sharp
phase transitions as well as metastable regions appear in all cases.

Theorem 5.1. Let d, n ě 2. For Lebesgue almost any initial sequence pxip0qqiPrns P

pSd´1qn, there exists some point x˚ P Sd´1 such that the unique solution pxip¨qqiPrns P

C0pRě0; pSd´1qnq to the corresponding Cauchy problem for (5.1) satisfies

lim
tÑ`8

xiptq “ x˚

for any i P rns.

We refer the interested reader to Appendix B for the proof.

5.2. The case β ! 1. Theorem 5.1 has some implications for small but positive β,
something which is already seen in Figure 2 and Figure 3. This is essentially due
to the fact that, formally,

9xiptq “ Pxiptq

˜

1

n

n
ÿ

j“1

xjptq

¸

`Opβq

for β ! 1. So, during a time ! β´1, the particles do not feel the influence of the
remainder Opβq and behave as in the regime β “ 0. This motivates
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Theorem 5.2. Fix d, n ě 2. For β ě 0, let Sβ Ă pSd´1qn be the subset consisting
of all initial sequences for which the associated solution to the Cauchy problem
for (SA) (or (USA)) converges to one cluster as t Ñ `8. Then

lim
βÑ0

PpSβq “ 1.

More generally, if Q and K are arbitrary d ˆ d matrices, then the same result
also holds for the Cauchy problem for (2.3) with V “ Id (or the natural analogue
of (USA) with these parameters).

Proof. We focus on the dynamics (SA), but the proof is in fact identical in the case
of (USA).

For α P r0, 1q, we say that a set formed from n points z1, . . . , zn P pSd´1qn is
α–clustered if for any i, j P rns, xzi, zjy ą α holds. Observe that if tz1, . . . , znu

is α–clustered for some α ě 0, then the solution to the Cauchy problem for (SA)
(for arbitrary β ě 0) with this sequence as initial condition converges to a single
cluster, since w “ z1 satisfies the assumption in Lemma 4.2.

Now, for any integer m ě 1, we denote by Sm
0 Ă S0 the set of initial sequences

x1p0q, . . . , xnp0q in pSd´1qn for which the solution px0i p¨qqiPrns to the associated
Cauchy problem for (5.1) is 3

4–clustered at time t “ m, namely

(5.2) xx0i pmq, x0j pmqy ą
3

4

holds for all i, j P rns. We see that Sm
0 is an open set for any integer m ě 1.

Moreover, Sm
0 Ă Sm`1

0 according to the proof of Lemma 4.2, and
Ť`8

m“1 S
m
0 “ S0.

This implies that

(5.3) lim
mÑ`8

PpSm
0 q “ 1.

We now show that the solution to (SA) is near that of (5.1), starting from the same
initial condition, when β is small. Using the Duhamel formula, we find

xβi ptq ´ x0i ptq “

ż t

0

n
ÿ

j“1

˜

eβxQxβ
i psq,Kxβ

j psqy

řn
k“1 e

βxQxβ
i psq,Kxβ

kpsqy

¸

Pxβ
i psq

pxβj psqq ds

´

ż t

0

1

n

n
ÿ

j“1

Px0
i psqpx0j psqqds

“

ż t

0

n
ÿ

j“1

ˆ

1

n
`O

ˆ

β

n

˙˙

Pxβ
i psq

pxβj psqq ds

´

ż t

0

1

n

n
ÿ

j“1

Px0
i psqpx0j psqqds,

where we used that all particles lie on Sd´1 for all times. Employing Grönwall, we
deduce

›

›

›
xβi ptq ´ x0i ptq

›

›

›
ď Opβqe3t(5.4)

for all t ě 0, β ě 0 and i P rns. Due to (5.4), there exists some βm ą 0 such that
for any β P r0, βms,

(5.5)
›

›

›
xβi pmq ´ x0i pmq

›

›

›
ď

1

8
.
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For this to hold, we clearly need βm Ñ 0 as m Ñ `8. Combining (5.2) and (5.5),
we gather that for any initial condition in Sm

0 , the solution pxβi p¨qqiPrns to the
corresponding Cauchy problem for (SA) is 1

2–clustered at time t “ m, namely
satisfies

xxβi pmq, xβj pmqy ą
1

2
for all i, j P rns and β P r0, βms. Thus Sm

0 Ă Sβ for any β P r0, βms by virtue of
Lemma 4.2, which together with (5.3) concludes the proof. □

One can naturally ask

Problem 4. Does PpSβq “ 1 hold for all β ě 0?

We can in fact provide a partial answer to the above problem (and also sig-
nificantly sharpen Theorem 5.2), relying on the gradient flow structure evoked in
Section 3.4. Namely, we can show the following.

Theorem 5.3. Fix d, n ě 2. For Lebesgue almost any pxip0qqiPrns P pSd´1qn,
there exist x˚ P Sd´1 and constants Cd, c ą 0 depending only on d, such that
whenever β ≲ c n´1 or β ě Cd n

2, the solution pxip¨qqiPrns P C0pRě0; pSd´1qnq to
the corresponding Cauchy problem for (SA) (resp. for (USA)) satisfies

lim
tÑ`8

xiptq “ x˚

for all i P rns.

We refer the interested reader to Appendix C for the proof.

Part 3. Further questions

We conclude this manuscript by discussing several avenues of research that can
lead to a finer understanding of the clustering phenomenon and generalizations of
our results, and which, we believe, are of independent mathematical interest.

6. Dynamics on the circle

We study the dynamics (SA) and (USA) in the special case d “ 2, namely on
the unit circle S1 Ă R2. This model, parametrized by angles and related to the
celebrated Kuramoto model, is of independent interest and deserves a complete
mathematical analysis.

6.1. Angular equations. On the circle S1, all particles xiptq P S1 are of course
completely characterized by the angle θiptq P T: xiptq “ cospθiptqqe1 ` sinpθiptqqe2
where e1 “ p1, 0q and e2 “ p0, 1q P R2. We focus on the dynamics (USA) for
simplicity. For any i P rns and t ě 0, we may derive the equation satisfied by θiptq
from cospθiptqq “ xxiptq, e1y: differentiating in t and plugging into (USA) we obtain

9θiptq “ ´
n´1

sinpθiptqq

˜

n
ÿ

j“1

eβxxiptq,xjptqy
”

xxjptq, e1y ´ xxiptq, xjptqyxxiptq, e1y

ı

¸

where we used the definition of the projection (if θiptq “ 0 for some t, we differ-
entiate the equality sinpθiptqq “ xxiptq, e2y instead, which also leads to (6.1) in the
end). Observing that

xxiptq, xjptqy “ cospθiptq ´ θjptqq,
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we find

9θiptq “ ´
n´1

sinpθiptqq

˜

n
ÿ

j“1

eβ cospθiptq´θjptqq
”

cospθjptqq ´ cospθiptq ´ θjptqq cospθiptqq

ı

¸

.

Using elementary trigonometry, we conclude that

(6.1) 9θiptq “ ´
1

n

n
ÿ

j“1

eβ cospθiptq´θjptqq sinpθiptq ´ θjptqq.

The case β “ 0 is exactly the Kuramoto model recalled in Section 6.2. Suppose for
the time being that β ą 0. Defining the function hβ : T Ñ Rě0 as

hβpθq “ eβ cospθq,

we have effectively deduced that the empirical measure of the angles, νptq “
1
n

řn
j“1 δθjptq, which is a measure on the torus T, is a solution to the continuity

equation
Btνptq ` BθpX rνptqsνptqq “ 0, on Rě0 ˆ T,

where
X rνspθq “

1

β

´

h1
β ˚ ν

¯

pθq.

When the particles xiptq follow (SA), one readily checks that the same continuity
equation is satisfied but rather with the field

X rνspθq “
1

β

ˆ

h1
β ˚ ν

hβ ˚ ν

˙

pθq.

6.2. The Kuramoto model. As mentioned above, when β “ 0, (6.1) is a partic-
ular case of the Kuramoto model [Kur75]:

(6.2) 9θiptq “ ωi `
K

n

n
ÿ

j“1

sinpθjptq ´ θiptqq,

where K ą 0 is a prescribed coupling constant, and ωi P T are the intrinsic natural
frequencies of the oscillators θiptq. It is known that for sufficiently small coupling
strength K, the oscillators θiptq in the Kuramoto model (6.2) do not synchro-
nize in long time. It is also known that when K exceeds some critical threshold
value, a phase transition occurs, leading to the synchronization of a fraction of
the oscillators. If K is chosen very large, there is total synchronization of the
oscillators in long time. For more on the mathematical aspects of the Kuramoto
model, we refer the reader to the review papers [Str00, ABV`05, HKPZ16] (see also
[CCH`14, Chi15, FGVG16, DFGV18, HR20, TSS20, ABK`22] for a non-exhaustive
list of other recent mathematical results on the subject).

When all the frequencies ωi are equal to some given frequency, ω P R say, after
a change of variable of the form θiptq Ð θiptq ´ ωt, the dynamics in (6.2) become
the gradient flow

9θptq “ n∇Fpθq

where the energy F : Tn Ñ Rě0 reads

(6.3) Fpθq “
K

2n2

n
ÿ

i“1

n
ÿ

j“1

cospθi ´ θjq.
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The oscillators can be viewed as attempting to maximize this energy. The energy
F is maximized when all the oscillators are synchronized, that is, θi “ θ˚ for some
θ˚ P T and for all i P rns. As the dynamics follow a gradient system, the equilibrium
states are the critical points of the energy, namely those satisfying ∇Fpθq “ 0. The
local maxima of F correspond to equilibrium states θ that are physically achievable,
since small perturbations thereof return the system back to θ.

Some authors consider a variant of the Kuramoto model where the oscillators
are interacting according to the edges of a graph. In other words, the coefficients
Aij of the graph’s adjacency matrix are inserted in the sum in (6.3) as weights,
and the dynamics are then the corresponding gradient flow. A recent line of work
culminating with [ABK`22] has established that synchronization occurs with high
probability for Erdős–Rényi graphs with parameter p, for every p right above the
connectivity threshold.

Coming back to our dynamics (6.1), we notice that it can also be written as a
gradient flow on Tn:

9θptq “ n∇Eβpθptqq,

for the interaction energy Eβ : Tn Ñ Rě0 defined as

(6.4) Eβpθq “
1

2βn2

n
ÿ

i“1

n
ÿ

j“1

eβ cospθi´θjq,

which is maximized when θi “ θ˚ for some θ˚ P T and for all i P rns. In the spirit
of [LXB19], we suggest the following open problem—we recall that a critical point
is called a strict saddle point of Eβ if the Hessian of Eβ at these points has at least
one positive eigenvalue.

Problem 5. With the exception of the global maxima, are all critical points of Eβ

strict saddle points?

By classical arguments, recalled in Appendix B, a positive answer to Problem
5 would imply that for all initial conditions except a set of measure zero, all θiptq
converge under the dynamics (6.1) to a common limit as t Ñ `8. Note that the
proof of Theorem 5.3 already yields a positive answer to Problem 5 in the regimes
β ≲ n´1 and β ≳d n

2. The regime β P pc n´1, Cdn
2q remains open.

Extensions of the Kuramoto model of the form

(6.5) 9θiptq “ ωi `
K

n

n
ÿ

j“1

hpθjptq ´ θiptqq,

for a general non-linearity h : T Ñ R, which contains both (6.2) and our model (6.1)
as particular cases, have already been studied in the physics literature. For instance,
we refer the reader to [Dai92] (see also [ABV`05, page 158]), where many heuristics
are proposed to address the behavior of solutions to these dynamics. We are not
aware of mathematical results for (6.1) besides Theorem 5.3. We nevertheless have
some hope that handling the dynamics (6.1) is easier than dealing with (6.5) for a
general h; for instance, we have

hβpθq “ eβ cospθq “
ÿ

kPZ
Ikpβqeikθ

where Ikpβq are the modified Bessel function of the first kind, whose properties
have been extensively studied.
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7. BBGKY hierarchy

For the sake of simplicity, we again focus on the dynamics on the circle S1,
where recall that all particles are parametrized by angles (which we also refer to
as particles). To carve out an even more complete understanding of the cluster-
ing phenomenon, it is natural to consider initial particles sampled i.i.d. from the
uniform distribution on S1 and to study the time-evolution of the r-particle dis-
tribution ρprq

n pt, θ1, . . . , θrq, defined as the joint law of the particles θ1ptq, . . . , θrptq.
Otherwise put, it is the r-point marginal of the joint distribution ρpnqpt, ¨q P PpTnq

of all n particles. Note that because of rotational invariance, ρp1qpt, ¨q is just the
uniform distribution equal to 1

2π for all t ě 0. For r “ 2, again by rotational
invariance, there exists some ψpt, ¨q : T Ñ Rě0 such that

ρp2qpt, θ1, θ2q “
1

2π
ψpt, θ2 ´ θ1q.

Proving the clustering/synchronization of all θiptq in long time amounts to proving
that ψpt, ¨q converges to a Dirac mass centered at 0 as t Ñ `8. Using the fact that
ρpnqpt, ¨q solves the Liouville equation, by following the method used to derive the
BBGKY12 hierarchy [GSRT13, Gol16], it is possible to show that ψpt, ¨q satisfies

(7.1)

#

Btψpt, xq ` Bxpvpt, xqψpt, xqq “ 0 in Rě0 ˆ T
ψp0, xq “ p2πq´1 in T,

where

vpt, xq “
2

βn
h1
βpxq ´

2pn´ 2q

βn
gpt, xq,

and
gpt, xq “ E

”

´ h1
βpθ3ptqq

ˇ

ˇ

ˇ
θ1ptq “ 0, θ2ptq “ x

ı

.

Note that the equation (7.1) is not closed since gpt, xq depends on the 3-point
correlation function. This is typical in the BBGKY hierarchy, whereupon physical
theory and experimental evidence is typically used to devise an ansatz for closing
the system. For instance, the Boltzmann equation is derived from the BBGKY
hierarchy by assuming the molecular chaos hypothesis (Stosszahlansatz) at the level
of r “ 2. We suggest to close (7.1) in a way that reflects the formation of clusters:

Problem 6. Devise a realistic ansatz for gpt, xq which allows to close equation (7.1),
and allows to prove the convergence of ψpt, ¨q to a Dirac mass centered at 0 as
t Ñ `8.

The derivation of a BBGKY hierarchy when d ą 2, as well as for (SA), are also
problems which we believe merit further investigation.

8. General matrices

Figure 4 hints at the likelihood of the clustering phenomenon being significantly
more general than just the case Q “ K “ V “ Id. However, extending our proofs
to more general parameter matrices does not appear to be straightforward and is
an open problem. Here we discuss a couple of particular cases (without excluding
other approaches).

12Bogoliubov–Born–Green–Kirkwood–Yvon.
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8.1. The repulsive case. As seen from Lemma 3.6, in the repulsive case V “ ´Id
the interaction energy Eβ decreases along trajectories. Recall that the unique global
minimum of Eβ over PpSd´1q is the uniform distribution (Proposition 3.3). In
contrast, we explain in this section that many different configurations of n points
may yield global minima for Eβ when minimized over empirical measures with n
atoms.

We thus focus on minimizing Eβ over the set PnpSd´1q of empirical measures,
namely sums of n Dirac masses. Rewriting Eβ as

Eβrµs “
e2β

2β

ĳ

e´β}x´x1
}
2

dµpxqdµpx1q,

it turns out that minimizing Eβ over PnpSd´1q is precisely the problem of find-
ing optimal configurations of points on Sd´1, which has direct links to the sphere
packing problem [CK07, CKM`22] and coding theory [DGS91]. For µ P PnpSd´1q,
we can equivalently rewrite Eβ in terms of the set of support points C Ă Sd´1,
#C“ n:

Eβrµs “ HβrCs “
e2β

2n2β

ÿ

x,x1
PC

e´β}x´x1
}
2

.

In [CK07], Cohn and Kumar characterize the global minima C of Hβ . To state
their result, we need the following definition.

Definition 8.1. Let n ě 2. A set of points C “ tx1, . . . , xnu Ă Sd´1 is called a
spherical t-design if

ż

ppxqdσdpxq “
1

n

n
ÿ

i“1

ppxiq

for all polynomials p of d variables, of total degree at most t. The set of points C is
called a sharp configuration if there are m distinct inner products between pairwise
distinct points in C, for some m ą 1, and if it is a spherical p2m´ 1q-design.

The following result is a special case of [CK07, Theorem 1.2].

Theorem 8.2 ([CK07]). Let n ě 2. Any global minimum of Hβ among CĂ Sd´1,
#C“ n is either a sharp configuration, or the vertices of a 600-cell13.

The set of sharp configurations is not known for all regimes of n, d or m (the
largest m such that the configuration is a spherical m-design). A list of known
examples is provided in [CK07, Table 1]: it consists of vertices of full-dimensional
polytopes (specifically, regular polytopes whose faces are simplices), or particular
derivations of the E8 root lattice in R8 and the Leech lattice in R24. We defer
the reader to [CK07] and the illustrative experimental paper [BBC`09] for further
detail. A complete picture of the long time behavior of Transformers in the repulsive
case remains open.

8.2. Pure self-attention. An alternative avenue for conducting such an analysis
which has shown to be particularly fruitful consists in removing the projector Px,
leading to

(8.1) 9xiptq “
1

Zβ,iptq

n
ÿ

j“1

eβxQxiptq,KxjptqyV xjptq

13A 600-cell is a particular 4-dimensional convex polytope with n “ 120 vertices.



30 GESHKOVSKI, LETROUIT, POLYANSKIY, AND RIGOLLET

for all i P rns and t P Rě0. In fact, in [GLPR23] we analyze precisely these dynamics,
and show different clustering results depending on the spectral properties of the
matrix V . We briefly summarize our findings in what follows.

8.2.1. A review of [GLPR23]. For most choices of value matrices V , without rescal-
ing time, most particles diverge to ˘8 and no particular pattern emerges. To make
a very rough analogy, (8.1) "looks like" 9xiptq “ V xiptq (which amounts to having
Pijptq “ δij instead of (2.5)), whose solutions are given by xiptq “ etV xip0q. To
discern the formation of clusters, we introduce the rescaling14

(8.2) ziptq “ e´tV xiptq,

which are solutions to

(8.3) 9ziptq “
1

Zβ,iptq

n
ÿ

j“1

eβxQetV ziptq,KetV zjptqyV pzjptq ´ ziptqq

for i P rns and t ě 0, where

Zβ,iptq “

n
ÿ

k“1

eβxQetV ziptq,KetV zkptqy,

whereas the initial condition remains the same, namely xip0q “ zip0q. It is crucial
to notice that the coefficients Aijptq (see (2.5)) of the self-attention matrix for the
rescaled particles ziptq are the same as those for the original particles xiptq. The
weight Aijptq indicates the strength of the attraction of ziptq by zjptq. In [GLPR23]
we show that the rescaled particles ziptq cluster toward well-characterized geometric
objects as t Ñ `8 for various choices of matrices pQ,K, V q. Our results are
summarized in Table 1 below, whose first two lines are discussed thereafter.

V K and Q Limit geometry Result in [GLPR23]

V “ Id QJK ą 0 vertices of convex polytope Theorem 3.1
λ1pV q ą 0, simple xQφ1,Kφ1y ą 0 union of 3 parallel hyperplanes Theorem 4.1
V paranormal QJK ą 0 polytope ˆ subspaces Theorem 5.1

V “ ´Id QJK “ Id single cluster at origin˚ Theorem C.5

Table 1. Summary of the clustering results of [GLPR23]. ˚All results
except for the case V “ ´Id hold for the time-scaled dynamics (8.3).

When V “ Id, outside from exceptional situations, all particles cluster to vertices
of some convex polytope. Indeed, since the velocity 9ziptq is a convex combination
of the attractions zjptq ´ ziptq, the convex hull Kptq of the ziptq shrinks and thus
converges to some convex polytope. The vertices of the latter attract all particles
as t Ñ `8. When the eigenvalue with largest real part of V , denoted by λ1pV q,
is simple and positive, the rescaled particles ziptq cluster on hyperplanes which are
parallel to the direct sum of the eigenspaces of the remaining eigenvalues. Roughly
speaking, the coordinates of the points ziptq along the eigenvector of V correspond-
ing to λ1pV q quickly dominate the matrix coefficients Pijptq in (8.3) due to the
factors etV zjptq. For more results and insights regarding clustering on Rd, we refer

14The rescaling (8.2) should be seen as a surrogate for layer normalization.
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the reader to [GLPR23]. We nonetheless leave the reader with the following general
question:

Problem 7. Is it possible to extend the clustering results of Table 1 to other cases
of pQ,K, V q? What are the resulting limit shapes?

8.2.2. Singular dynamics. We mention another intriguing question, whose answer
would allow for a transparent geometric understanding of clustering for (8.3). Let
pQ,K, V q be given d ˆ d matrices. For β ą 0, we consider the system of coupled
ODEs

(8.4) 9ziptq “
1

Zβ,iptq

n
ÿ

j“1

eβxQziptq,KzjptqyV pzjptq ´ ziptqq,

where once again

Zβ,iptq “

n
ÿ

k“1

eβxQziptq,Kzkptqy.

For any T ą 0, and any fixed initial condition pzip0qqiPrns P pRdqn, as β Ñ `8, we
expect that the solution to (8.4) converges uniformly on r0, T s to a solution of

(8.5) 9ziptq “
1

|Ciptq|

ÿ

jPCiptq

V pzjptq ´ ziptqq

where

(8.6) Ciptq “

!

j P rns : xQziptq,Kzjptqy ě xQziptq,Kzkptqy for all k P rns

)

.

However, defining a notion of solution to (8.5)–(8.6) is not straightforward, as
illustrated by the following example.

Example 8.3. Suppose d “ 2, n “ 3. Let Q “ K “ V “ Id and z1p0q “

p1, 1q, z2p0q “ p´1, 1q, z3p0q “ p0, 0q. Consider the evolution of these particles
through (8.5)–(8.6). The points z1ptq and z2ptq do not move, because it is easily
seen that Ciptq “ tiu for i P t1, 2u. On the other hand, the point z3ptq can be chosen
to solve either of three equations: 9z3ptq “ z1ptq ´ z3ptq, or 9z3ptq “ z2ptq ´ z3ptq, or
even 9z3ptq “ 1

2 pz1ptq ` z2ptqq ´ z3ptq. In any of these cases, both (8.5) and (8.6)
remain satisfied for almost every t ě 0.

It is possible to prove the existence of solutions to (8.5)–(8.6) defined in the sense
of Filippov15: for this, we can either use a time-discretization of (8.5)–(8.6), or use a
convergence argument for solutions to (8.4) as β Ñ `8. Uniqueness however does
not hold, as illustrated by Example 8.3. This naturally leads us to the following
question:

Problem 8. Is it possible to establish a selection principle (similar to viscosity or
entropy solutions) for solutions to (8.5)–(8.6) which allows to restore uniqueness?
In the affirmative, is it possible to revisit the clustering results of [GLPR23] and
Problem 7 in the setting of (8.5)–(8.6)?

We believe that (8.5)–(8.6) is also an original model for collective behavior. There
are some similarities in spirit with methods arising in consensus based optimization
(CBO for short), [PTTM17, CJLZ21]. With CBO methods, one wishes to minimize

15We thank Enrique Zuazua for this suggestion.
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a smooth and bounded, but otherwise arbitrary function f : Rd Ñ R by making
use of the Laplace method

lim
βÑ`8

ˆ

´
1

β
log

ż

Rd

e´βfpxq dρpxq

˙

“ inf
xPsupppρq

fpxq,

which holds for any fixed ρ P PacpRdq. This is accomplished by considering a
McKean-Vlasov particle system of the form

dxiptq “ ´λpxiptq´vf qHϵpfpxiptqq´fpvrµnptqsqqdt`
?
2σ|xiptq´vrµnptqs|dWiptq

for fixed β ą 0, with drift parameter λ ą 0 and noise parameter σ ě 0; Hϵ is a
particular smoothed Heaviside function, and µnptq is the empirical measure of the
particles. The point vrµs P Rd is a weighted average of the particles:

vrµs “
1

Zβ,µ

ż

Rd

e´βfpxqxdµpxq

where Zβ,µ “
ş

Rd e
´βfpxq dµpxq. Morally speaking, particles which are near a min-

imum of f have a larger weight. The drift term is a gradient relaxation (for a
quadratic potential) towards the current weighted average position of the batch of
particles. The diffusion term is an exploration term whose strength is proportional
to the distance of the particle from the current weighted average. Results of con-
vergence to a global minimizer do exist, under various smallness assumptions on
the initial distribution of the particles, and assumptions on the relative size of the
coefficients. They rely on the analysis of the associated Fokker-Planck equation,
see [CJLZ21, CD22], and also [FHPS21] for the analog on Sd´1. We point out that
similarities are mainly in spirit—these results and analysis are inapplicable to our
setting because there is no analog for fpxq. Nonetheless, they do raise the following
interesting question:

Problem 9. What can be said about the long time limit of Transformers with a
noise/diffusion term of strength σ ą 0?

The question is of interest for any of the Transformers models presented in what
precedes.

9. Approximation and control

Understanding the expressivity, namely the ability of a neural network to re-
produce any map in a given class (by tuning its parameters), is essential. Two
closely related notions reflect the expressivity of neural networks: interpolation—
the property of exactly matching arbitrarily many input and target samples—and
(universal) approximation—the property of approximating input-target functional
relationships in an appropriate topology. We refer the reader to [CLLS23] for a
primer on the relationship between these two notions in the contex of deep neural
networks.

For discrete-time Transformers, universal approximation has been shown to hold
in [YBR`19], making use of a variant of the architecture with translate parameters
and letting the number of layers go to infinity; see also [ADTK23] and the review
[JLLW23].

In the context of flow maps (from Rd to Rd), it is now well understood that
interpolation and approximation reflect the controllability properties of the system.
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The transfer of control theoretical techniques to the understanding of expressiv-
ity has borne fruit, both in terms of controllability results [AS22, CLT20, TG22,
LLS22, RBZ23, VR23, CLLS23] and optimal control insights [LCT18, GZ22]. We
are however not aware of control-theoretical results in which arbitrarily many input
measures ought to be mapped to as many output measures, as would be the case
for Transformers.
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Appendix

Appendix A. Proof of Theorem 4.7

Proof. We focus on the dynamics (SA), since the proof for (USA) follows from very
similar computations.

Step 1. The flow map is Lipschitz. We begin by showing that the trajectories
satisfy a Lipschitz property with respect to the initial data. To this end, let
pxip¨qqiPrns P C0pRě0; pSd´1qnq and pyip¨qqiPrns P C0pRě0; pSd´1qnq be two solutions
to the Cauchy problem for (SA) associated to data pxip0qqiPrns and pyip0qqiPrns

respectively. For any i P rns and t ě 0, we have

xiptq ´ yiptq “ xip0q ´ yip0q

`

ż t

0

n
ÿ

j“1

ˆ

eβxxipsq,xjpsqy

řn
k“1 e

βxxipsq,xkpsqy

˙

`

xjpsq ´ xxipsq, xjpsqyxipsq
˘

ds

´

ż t

0

n
ÿ

j“1

ˆ

eβxyipsq,yjpsqy

řn
k“1 e

βxyipsq,ykpsqy

˙

`

yjpsq ´ xyipsq, yjpsqyyipsq
˘

ds.(A.1)

We see that

›

›

›

›

›

ż t

0

n
ÿ

j“1

ˆ

eβxxipsq,xjpsqy

řn
k“1 e

βxxipsq,xkpsqy

˙

pxjpsq ´ yjpsqqds

›

›

›

›

›

ď

ż t

0

max
jPrns

}xjpsq ´ yjpsq}ds.

(A.2)

On another hand, since the softmax function with a parameter β is β–Lipschitz
(with respect to the Euclidean norm), we also get

›

›

›

›

›

ż t

0

n
ÿ

j“1

ˆ

eβxxipsq,xjpsqy

řn
k“1 e

βxxipsq,xkpsqy
´

eβxyipsq,yjpsqy

řn
k“1 e

βxyipsq,ykpsqy

˙

yjpsqds

›

›

›

›

›

ď βn
1
2

ż t

0

˜

n
ÿ

j“1

”

xxipsq, xjpsqy ´ xyipsq, yjpsqy

ı2
¸

1
2

ds

ď 2βn

ż t

0

max
jPrns

}xjpsq ´ yjpsq}ds.(A.3)
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Using (A.2), (A.3) and arguing similarly for the remaining terms in (A.1), we deduce
that

}xiptq ´ yiptq} ď }xip0q ´ yip0q} ` 10maxt1, βun

ż t

0

max
jPrns

}xjpsq ´ yjpsq}ds.

Maximizing over i P rns and applying the Grönwall inequality yields

(A.4) max
jPrns

}xjptq ´ yjptq} ď cpβqnt max
jPrns

}xjp0q ´ yjp0q} ,

for any i P rns and t ě 0.

Step 2. Almost orthogonality. Let x1p0q, . . . , xnp0q P Sd´1 be the random i.i.d.
initial points. We prove that with high probability, there exist n pairwise orthogonal
points y1p0q, . . . , ynp0q P Sd´1, such that for any i P rns,

(A.5) }xip0q ´ yip0q} ď

c

log d

d
.

To this end, we take y1p0q “ x1p0q and then construct the other points yip0q by
induction. Assume that y1p0q, . . . , yip0q are constructed for some i P rns, using only
knowledge about the points x1p0q, . . . , xip0q. Then by Lévy’s concentration of mea-
sure, since xi`1p0q is independent from x1p0q, . . . , xip0q and uniformly distributed
on Sd´1,

P

˜#

dist
`

xi`1p0q, spanty1p0q, . . . , yip0quK
˘

ď

c

log d

d

+¸

ě 1 ´ 4id´1{64,

for some universal constants c, C ą 0. Using the union bound, we gather that the
event

A0 “ t(A.5) is satisfied for any i P rnsu

has probability at least p0 “ 1 ´ 2n2d´1{64. We now consider the event

A“ A0 X tTheorem 4.1 is satisfiedu

which, since d ě n and thus the second event has probability 1, also holds with
probability at least p0 “ 1 ´ 2n2d´1{64. For the remainder of the proof, we assume
that A is satisfied.

Step 3. Proof of (4.10). Let pyip¨qqiPrns P C0pRě0; pSd´1qnq denote the unique solu-
tion to the Cauchy problem for (SA) corresponding to the initial datum pyip0qqiPrns.
A combination of (A.4) and (A.5) yields

(A.6) }xiptq ´ yiptq} ď cpβqnt

c

log d

d

for any i P rns and t ě 0, under A. Combining (A.6) with Theorem 4.6 we obtain

(A.7)
ˇ

ˇ

ˇ
xxiptq, xjptqy ´ γβptq

ˇ

ˇ

ˇ
ď 2cpβqnt

c

log d

d

for any i ‰ j and t ě 0, under A.
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We turn to the proof of the second part of (4.10). For this, we prove that for
large times t, both γβptq and xxiptq, xjptqy are necessarily close to 1. We first show
that

(A.8) 1 ´ γβptq ď
1

2
exp

¨

˝

n2eβ

2
´

n` e
β
2

¯ ´
nt

n` e
β
2

˛

‚

for any t ě 0. To this end, we notice that t ÞÑ γβptq is increasing and thus γβptq ě 0,
as well as 9γβptq ě 1

neβ
as long as γβptq ď 1

2 . Therefore,

γβ

ˆ

neβ

2

˙

ě
1

2
.

We deduce that for t ě neβ

2 ,

9γβptq ě
np1 ´ γβptqq

n` e
β
2

.

Integrating this inequality from neβ

2 to t, we obtain (A.8). We now set d˚pn, βq ě n
such that

(A.9)
d

log d
ě

16cpβq2

γβp 1
n q2

holds for any d ě d˚pn, βq. According to Lemma 4.2, since A is satisfied, there
exists x˚ P Sd´1 such that xiptq Ñ x˚ for any i P rns as t Ñ `8. We set

αptq :“ min
iPrns

xxiptq, x
˚y,

and prove that

(A.10) 1 ´ αptq ď exp

˜

1 ´ γβ
`

1
n

˘

t

2ne2β

¸

.

To this end, let us first prove that

(A.11) α

ˆ

1

n

˙

ě
1

2
γβ

ˆ

1

n

˙

.

From Step 2 in the proof of Lemma 4.2, we gather that x˚ lies in the convex cone
generated by the points x1ptq, . . . , xnptq for any t ą 0, and so the decomposition
(4.3) holds. Taking the inner product of xip 1

n q with the decomposition (4.3) at time
t “ 1

n , we get

α

ˆ

1

n

˙

ě min
pi,jqPrns2

B

xi

ˆ

1

n

˙

, xj

ˆ

1

n

˙F

ě γβ

ˆ

1

n

˙

´ 2cpβq

c

logpdq

d

ě
1

2
γβ

ˆ

1

n

˙

,

where the second inequality comes from (A.6) evaluated at time t “ 1
n , and the

last inequality comes from (A.9). This is precisely (A.11). Using the notation
aijptq “ Zβ,iptq

´1eβxxiptq,xjptqy as in the proof of Lemma 4.2, we now find

(A.12) 9αptq “ x 9xiptqptq, x˚y ě

n
ÿ

j“1

aiptqjptqp1 ´ xxiptqptq, xjptqyqαptq
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for one of the indices iptq P rns achieving the minimum in the definition of αptq.
Combining this with (A.11), we gather that αptq ě αp 1

n q for t ě 1
n . But

(A.13) min
jPrns

xxiptqptq, xjptqy ď

n
ÿ

k“1

θkptqxxiptqptq, xkptqy “ xxiptqptq, x˚y “ αptq.

Plugging (A.13) into (A.12) and using aijptq ě n´1e´2β we get

(A.14) 9αptq ě
1

ne2β
α

ˆ

1

n

˙

p1 ´ αptqq

for t ě 1
n . Integrating (A.14) from 1

n to t, we get (A.10). We therefore deduce
from (A.10) that

xxiptq, xjptqy ě 1 ´ exp

ˆ

1 ´ γβp 1
n qt

2ne2β

˙

holds for any distinct i, j P rns. Together with (A.8), we then get
(A.15)

ˇ

ˇ

ˇ
xxiptq, xjptqy ´ γβptq

ˇ

ˇ

ˇ
ď exp

ˆ

1 ´ γβp 1
n qt

2ne2β

˙

`
1

2
exp

˜

n2eβ

2pn` e
β
2 q

´
nt

n` e
β
2

¸

.

Finally, combining (A.7) and (A.15) we obtain (4.10). □

Remark A.1. An analogous statement to Theorem 4.7 holds for (USA), where γβ
would rather be the unique solution to (4.9). More concretely, Step 1 in the proof
is only slightly changed–the constant one obtains in the analogue of (4.10) is rather
cpβqnt with cpβq “ e10βe

2β

. Step 2 remains unchanged. In Step 3, (A.8) is replaced
by γβpn

2 q ě 1
2 and

1 ´ γβptq ď
1

2
exp

´

´e
β
2

´

t´
n

2

¯¯

.

The rest of the proof then remains essentially unchanged.

Appendix B. Proof of Theorem 5.1

The proof of Theorem 5.1 relies on standard arguments from dynamical systems,
upon noticing that the evolution (5.1) is a gradient ascent for the energy E0 :
pSd´1qn Ñ R defined as

E0px1, . . . , xnq “
1

n

n
ÿ

i“1

n
ÿ

j“1

xxi, xjy.

Since the dynamics are the gradient ascent of a real-analytic functional on the com-
pact real-analytic manifold pSd´1qn, the celebrated Łojasiewicz theorem [Loj63], in
the form given by [HKR18, Corollary 5.1]–which is valid in the context of general
compact Riemannian manifolds–, implies that for any initial condition X P pSd´1qn,
the solution ΦtpXq P pSd´1qn converges to some critical point X˚ P pSd´1qn of E0

as t Ñ `8.
We recall that a strict saddle point of E0 is a critical point of E0 at which the

Hessian of E0 has at least one strictly positive eigenvalue. Theorem 5.1 then follows
by combining the following couple of lemmas with the Łojasiewicz theorem.
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Lemma B.1. Let M be a compact Riemannian manifold and let f : M Ñ R be
a smooth function. The set of initial conditions X0 P M for which the gradient
ascent

(B.1)

#

9Xptq “ ∇fpXptqq

Xp0q “ X0

converges to a strict saddle point of f is of volume zero.

Proof of Lemma B.1. Let us denote by ΦtpX0q :“ Xptq, t ě 0 the solution to (B.1).
We denote by S Ă M the set of strict saddle points of f , and by A Ă M the set
of initial conditions X0 P M for which ΦtpX0q converges to a strict saddle point of
f as t Ñ `8. For any y P S, we denote by By a ball in which the local center-
stable manifold W sc

locpyq exists (see [Shu13], Theorem III.7 and Exercise III.3 for the
adaptation to flows). Using compactness, we may write the union of these balls as a
countable union

Ť

kPI Byk
(where I is countable and yk P M for k P I). If X0 P A,

there exists some t0 ě 0 and k P I such that ΦtpX0q P Byk
for all t ě t0. From the

center-stable manifold theorem ([Shu13], Theorem III.7 and Exercise III.3, where
we note that the Jacobian of a gradient vector field coincides, at a critical point,
with the Hessian of the corresponding function) we gather that ΦtpX0q P W sc

locpykq

for t ě t0, hence X0 P Φ´tpW sc
locpykqq for all t ě t0. The dimension of W sc

locpykq

is at most dimpMq ´ 1, thus it has zero volume. Since Φt is a diffeomorphism
on a compact manifold, Φ´t preserves null-sets and hence Φ´tpW sc

locpykqq has zero
volume for all t ě 0. Therefore A, which satisfies

AĂ
ď

kPI

ď

ℓPN
Φ´ℓpW sc

locpykqq

has volume zero. □

Lemma B.2. Any critical point px1, . . . , xnq P pSd´1qn of E0 which is not a global
minimum, namely such that x1 “ . . . “ xn, is a strict saddle point.

Proof of Lemma B.2. We extend the proof idea of [Tay12, Theorem 4.1] as follows.
Let px1, . . . , xnq P pSd´1qn be a critical point of E0, and assume that the points xi
are not all equal to each other.

Step 1. We first prove that there exists a set of indices SĂ rns such that

(B.2)
ÿ

iPS

ÿ

jPSc

xxi, xjy ă 0.

To this end, define

m :“
n
ÿ

j“1

xj ,

and consider two cases. If m ‰ 0, then we deduce from ∇E0px1, . . . , xnq “ 0 that
for any j P rns, xj is collinear with m. Thus xj “ ˘x1 for any j P rns. Setting

S“ tj P rns : xj “ `x1u,

we can see that (B.2) holds, unless S“ rns which has been excluded. Now suppose
that m “ 0. Then by expanding xm,xiy “ 0, we find that for any i P rns

´1 “

n
ÿ

j“2

xxj , x1y ,
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holds, which again implies (B.2) with S“ t1u.

Step 2. In this second step we look to deduce from (B.2) that px1, . . . , xnq is a strict
saddle point. Consider an arbitrary non-zero skew-symmetric matrix B and define
the perturbation

xiptq “

#

xi i R S

etBxi i P S.

Set E0ptq “ E0px1ptq, . . . , xnptqq. Note that we have

E0ptq “ const.`
2

n

ÿ

iPS

ÿ

jPSc

xxiptq, xjy ,

where we grouped time-independent terms into the constant (recall that etB is an
orthogonal matrix, since skew-symmetric matrices are the Lie algebra of SOpdq).
Thus

E1
0ptq “

2

n

ÿ

iPS

ÿ

jPSc

x 9xiptq, xjy

E2
0ptq “

2

n

ÿ

iPS

ÿ

jPSc

x :xiptq, xjy .

Since px1, . . . , xnq is a critical point of E0, we have E1
0p0q “ 0. On the other hand,

since :xip0q “ B2xi we have

(B.3) E2
0p0q “

2

n

ÿ

iPS

ÿ

jPSc

xB2xi, xjy .

We claim that given (B.2), there must exist some skew-symmetric matrix B such
that E2

0p0q ą 0. Indeed, if d is even, then we just take B as the block-diagonal
matrix with repeated block

„

0 1
´1 0

ȷ

,

so that B2 “ ´Id. If d is odd, we can represent

(B.4) ´Id “
1

d´ 1

d
ÿ

j“1

B2
j ,

where Bj is the same block-diagonal matrix, with the exception that the j-th block
is a 1 ˆ 1 zero-matrix. If each Bj were to yield E2

0p0q ď 0, then it would vio-
late (B.2). Thus, E2

0p0q ą 0 for some well-chosen skew-symmetric B, which proves
that px1, . . . , xnq is a strict saddle point. □

Appendix C. Proof of Theorem 5.3

Proof of Theorem 5.3. We leverage the gradient flow structure presented in Remark
3.7 and Section 3.4 (the manifold is compact, and the metric and functional are
analytic), and use Lemma B.1 as in the proof of Theorem 5.1. Consequently, it
suffices to show that, in the stated regimes of β, the critical points of Eβ which are
not global maxima are strict saddle points. For simplicity we write the argument
for (USA) and explain the extension to the case of (SA) in Remark C.1.
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Part 1. The case β ≳d n
2. We begin by focusing on the case d “ 2, and provide a

brief argument which shows that the case of arbitrary d ě 2 readily follows.
Let pθ1, . . . , θnq P Tn be a critical point such that all eigenvalues of the Hessian

of Eβ are non-positive. We intend to show that if β is sufficiently large, then
necessarily θ1 “ ¨ ¨ ¨ “ θn. To that end, note that the non-positivity of the Hessian
of Eβ implies in particular that for any subset of indices SĂ rns, we must have

(C.1)
ÿ

iPS

ÿ

jPS

BθiBθjEβpθ1, . . . , θnq ď 0 .

Notice that for any i, j P rns,

BθiEβpθ1, . . . , θnq “
1

n2

ÿ

mPrnsztiu

´ sinpθi ´ θmqeβ cospθi´θmq

and

BθiBθjEβpθ1, . . . , θnq “
1

n2
¨

$

’

&

’

%

gpθi ´ θjq, i ‰ j

´
ÿ

mPrnsztiu

gpθi ´ θmq, i “ j ,

where we set gpxq :“ pcospxq ´ β sin2pxqqeβ cospxq. Plugging this expression back
into (C.1) and simplifying, we obtain

(C.2)
ÿ

iPS

ÿ

jPSc

gpθi ´ θjq ě 0 .

Let us now define τ˚
β be the unique solution on r0, π2 q of the equation

β sin2pτq “ cospτq .

Note that τ˚
β is a monotonically decreasing function of β, and in fact

τ˚
β “

1 ` op1q
?
β

as β Ñ `8. The importance of τ˚
β is in implying the following property of the

function g: for any τ R r´τ˚
β , τ

˚
β s, we must have that gpτq ă 0 (see Figure 5). We

arrive at the following conclusion: it must be that for any proper subset S Ă rns

there exists, by virtue of (C.2), some index j P Sc such that

inf
kPS

|θj ´ θk| ă τ˚
β .

So now let us start with S“ t1u and grow S inductively by adding those points θj
at distance ă τ˚

β from tθk : k P Su at each induction step. If β is large enough so
that

pn´ 1qτ˚
β ă

π

2
,

then in the process of adding points we have travelled a total arc-length ă π{2 on
each side of x1. Thus it must be that the collection of points θ1, . . . , θn is strictly
contained inside a half-circle of angular width ă π. By Lemma 4.2 we know that
there can be no critical points of Eβ that are strictly inside some half-circle, unless
that critical point is trivial: θ1 “ ¨ ¨ ¨ “ θn. This completes the proof when d “ 2.

We can show that the same conclusion holds for any dimension d ě 2. The proof
follows by arguing just as above, making instead use of the following generalization
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−2 2

−2

2

4

6

β = 6

β
=

2

Figure 5. The function τ ÞÑ gpτq for two values of β.

of (C.2): given a collection x1, . . . , xn P Sd´1 at which the Hessian of Eβ is non-
positive, we must have for any subset SĂ rns that

(C.3)
ÿ

iPS

ÿ

jPSc

gpθijq ě 0,

where gpζq “ eβ cospζqppd ´ 1q cospζq ´ β sin2pζqq and θij P r0, πs is the geodesic
distance between xi and xj , namely cospθijq “ xxi, xjy. We now show (C.3). By
repeating the argument in Step 2 of the proof of Lemma B.2, we see that for any
skew-symmetric matrix B we must have

(C.4)
ÿ

iPS

ÿ

jPSc

eβxxi,xjy
´

βxBxi, xjy2 ` xB2xi, xjy

¯

ď 0.

Now we take B to be random by generating Bij
i.i.d.
„ P , i ă j and P being any

zero-mean, unit-variance distribution. We set Bji “ ´Bij and Bii “ 0. Then it is
easy to check that

ErB2s “ ´pd´ 1qId

and

ErxBxi, xjy2s “ 1 ´ xxi, xjy2 “ sin2pθijq.

Thus, taking the expectation over all such B in (C.4) yields (C.3). Mirroring the
proof for d “ 2, we define τ˚

β to be the unique solution on r0, π2 q of the equation
β sin2pτq “ pd´ 1q cospτq. We note that

τ˚
β “

d

pd´ 1q ` op1q

β

for β Ñ `8. Repeating verbatim the argument for the case d “ 2, we deduce the
convergence to a single cluster whenever β ≳ pd´ 1qn2.
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Part 2. The case β ≲ n´1. Consider

Eβpx1, . . . , xnq “
1

2β

n
ÿ

i“1

n
ÿ

j“1

´

eβxxi,xjy ´ 1
¯

.

Note that this is only a slight deviation from the energy studied in Section 3.4: we
solely subtracted a constant. Consequently the Transformer dynamics (USA) are
also a gradient flow for this energy. The main interest of considering this modified
energy is the observation that

Eβpx1, . . . , xnq “ E0px1, . . . , xnq ` β Rβpx1, . . . , xnq,

where Rβ is smooth. Hence Rβ has a bounded Hessian on pSd´1qn uniformly with
respect to β, and

(C.5) ∇Eβ “ ∇E0 `Opβq, HessEβ “ HessE0 `Opβq.

Observe that in the proof of Theorem 5.1, we actually showed that there exists
c ą 0 such that at any critical point px1, . . . , xnq of E0 for which xi ‰ xj whenever
i ‰ j, at least one of the eigenvalues of the Hessian of E0, λ say, satisfies λ ě c.
Indeed, in (B.2) the proof actually shows the existence of some SĂ rns such that

ÿ

iPS

ÿ

jPSc

xxi, xjy ď ´1.

Then, (B.3), together with (B.4) for instance, yield

(C.6) E2
0p0q ě

2pd´ 1q

dn
“: c

for one of the Bj .
Now suppose that there exists a positive sequence βk Ñ 0 as well asXk P pSd´1qn

such that Xk is a critical point of Eβk
and all of the eigenvalues of HessEβk

pXkq

are non-positive. Then by virtue of the continuity properties of Eβ with respect to
β in (C.5), we find that, up to extracting a subsequence, there is some limit point
X “ px1, . . . , xnq P pSd´1qn of Xk which is a critical point of E0, and such that all of
the eigenvalues of HessE0pXq are non-positive. Per Theorem 5.1, this implies that
x1 “ . . . “ xn. But then, for large enough k, Xk is also constituted of points which
are all nearly equal, whence in the same hemisphere, and the only such critical
point of Eβ is that in which all points are equal (synchronized). This, combined
with the continuity of the eigenvalues of HessEβ with respect to β and (C.6), proves
that there exists some c ą 0 independent of n such that whenever β ď c n´1, all
critical points of Eβ except synchronized ones are strict saddle points. □

Remark C.1. We comment on the extension of the above proof to the dynamics
(SA). We recall that (SA) is a gradient flow, but for a different metric—see Sec-
tion 3.4—and we show that the saddle point property is preserved across metrics.
Our proof is an adaptation of a classical argument: the Hessian of a function at
a critical point is a notion which does not depend on the choice of Riemannian
metric.

We begin with Part 1 of the proof. Let x “ px1, . . . , xnq P pSd´1qn be a critical
point of Eβ (this does not depend on the metric) such that not all xi are equal to each
other. Recall that for f : pSd´1qn Ñ R, for any metric on pSd´1qn (with associated
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Christoffel symbols Γk
ij) and any associated orthonormal basis y1, . . . , ypd´1qn, the

Hessian of f reads

(C.7) Hesspfq “

ˆ

B2f

ByiByj
´ Γk

ij

Bf

Byk

˙

dyi b dyj .

Since we are evaluating the Hessian at a critical point x of Eβ, the term carrying
the Christoffel symbols Γk

ij vanishes. In the above argument, we saw that HessEβ

evaluated at x, and written in an orthonormal basis for the canonical metric g on
pSd´1qn, is not negative semi-definite. We denote this matrix by Mg; we know that
there exists v P TxpSd´1qn such that gpv, vq “ 1 and vJMgv ą 0. Let g̃ be another
metric on pSd´1qn; we denote by Mg̃ the Hessian evaluated at x, and written in an
orthonormal basis for rg. Let c : Rě0 Ñ pSd´1qn be such that cp0q “ x and 9cp0q “ v.
Since x is a critical point (for both metrics), a Taylor expansion to second order in
the two orthonormal bases yields

Eβpcptqq “ Eβpcp0qq `
1

2
t2vJMgv `Opt3q

as well as
Eβpcptqq “ Eβpcp0qq `

1

2
t2}v}

´2
g̃ vJMg̃v `Opt3q

thanks to (C.7). Hence vJMg̃v ą 0. Specializing to g̃ being the metric of Section
3.4, with respect to which (SA) is a gradient flow for Eβ, we obtain Part 1 for (SA).

We now proceed with Part 2, where the point of contention is (C.5), since the
metric with respect to which the gradient and Hessian of E0 are taken is not the
same as that for Eβ. Denote the modified metric defined in Section 3.4 by gβ, and
the canonical metric by g. For any x P pSd´1qn and v P TxpSd´1qn we have

DEβpxqrvs “ gβp∇gβEβpxq, vq,

but also DEβpxqrvs “ gp∇gEβpxq, vq. By virtue of the explicit form of gβ and Eβ as
well as (C.5), we gather that

(C.8) gβp∇gβEβpxq, vq “ gp∇gE0pxq, vq `Opβq

which implies that any sequence of critical points of Eβ converges to a critical point
for E0. Similarly, since HessgβEβpxqrvs “ Dp∇gβEβpxqqrvs, we find

(C.9) HessgβEβpxqrvs “ HessgE0pxqrvs `Opβq.

We can then repeat the argument in Part 2 by replacing (C.5) by (C.8) and (C.9).
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